
April 2010

Technology Radar
Prepared by the ThoughtWorks

Technical Advisory Board

Introduction

The ThoughtWorks Technical Advisory Board consists of a group of senior technical
leaders within ThoughtWorks. They produce the ThoughtWorks Technology Radar to
help decision-makers understand emerging technologies and trends that affect the
market today. This group meets regularly to discuss the global technology strategy
for ThoughtWorks and the technology trends that significantly impact our industry.

The Technology Radar captures the output of these
discussions in a format that provides value to a
wide range of stakeholders, from CIOs to enterprise
developers. With this in mind the content provided in
this document is kept at a summary level, leaving it
up to the reader to pursue more detailed knowledge
as the need arises.

The goal of the radar is conciseness, so that its
target audience understands it quickly. To that end,
it is graphical in nature. However, terseness requires
extra context; thus, there are some aspects that
warrant further explanation. The first is the groupings
(or quadrants) that radar items are placed within:
techniques, tools, languages and platforms. In a number
of cases a single radar item could appear in multiple
quadrants, but we have tried to map each item to the
quadrant that is most appropriate.

The titles given to each concentric circle also require
clarification: hold, assess, trial and adopt. The
placement of a radar item in one of these circles
reflects our current opinion on the item.

Hold: the item may be of interest to ThoughtWorks
and others in the industry, however we think an
enterprise should not yet invest significant time and
resources to build experience with the item.

Assess: a technique, tool, language or platform that
moves into the assess band of the radar is something
that we believe is worth exploring with the goal of
understanding how it will affect the technology impacted
dimensions of your enterprise.

Trial: having established a radar item as something
worth pursuing, it is important to understand how to
build up this capability. Enterprises should look to
trial the technology on projects that have a risk profile
capable of taking onboard a new technology
or approach.

Adopt: the industry has begun to move beyond the trial
phase and has found the proper patterns of usage for
an item. An item may also appear in the adopt band
if we feel strongly that the industry should be adopting
a radar item now, rather than going through a more
gradual adoption approach.

As we look at each quadrant in detail, we try to show
the movement that each item has taken since we last
compiled this information. With a large amount of
new items for the radar, we have opted to differentiate
new items (triangles) from existing items (circles).

Contributors
The ThoughtWorks Technical Advisory Board is comprised of

Rebecca Parsons (CTO)
Martin Fowler (Chief Scientist)
Ian Cartwright
Erik Doernenburg
Jim Fischer
Neal Ford

Ajey Gore
Wendy Istvanick
Mike Mason
Cyndi Mitchell
David Rice
Pramod Sadalage

Chris Stevenson
Jim Webber
Hao Xu

with technical assistance
provided by Darren Smith.

Copyright © 2010 thoughtworks.com Technology Radar - April 2010 - 2

Techniques Tools
1. Build pipelines
2. Emergent design
3. Evolutionary DB
4. Web as platform
5. Automation of technical tests
6. Service choreography
7. Lean software development
8. Continuous deployment
9. Visualization and metrics
10. Polyglot programming
11. Incremental data warehousing
12. OAuth
13. Scrum certifi cation

14. ASP.NET MVC
15. Subversion
16. Squid
17. Message buses without smarts
18. Next-gen test tools
19. Neo4j
20. mongoDB
21. Distributed version control

22. NoSQL
23. RDF triple stores
24. Restfulie
25. Visualizations for business data
26. GitHub
27. Cross mobile platforms
28. ESB
29. Language workbenches

30. C# 4.0
31. Ruby/Jruby
32. Javascript as a fi rst-class language
33. DSLs
34. Groovy
35. Java language end of life
36. F#
37. Clojure
38. Scala
39. HTML 5

 Incremental data warehousing

 Scrum certifi cation

13

59

51

58

56

55

5453

4852

49

47

50

39

46

44

43

45

41

42 40

31

32

34

33

37
38

36

35

29
23

21

19

20

18

17

22

28

24

25

26

27

12

11

7
8

6

5

10

9

3

4

1

2
16

15

14

57

30

40. IE6 end of life
41. Platform roadmaps
42. ALT.NET
43. iPhone
44. Cloud
45. JVM as platform
46. android
47. EC2 & S3
48. Location based services
49. Large format mobile devices

50. Facebook as business platform
51. Google as corporate platform
52. Application appliances
53. Google App Engine
54. mobile web
55. Rich Internet Applications
56. Azure
57. GWT
58. IE8
59. WS-* beyond basic profi le

Platforms Languages

Copyright © 2010 thoughtworks.com Technology Radar - April 2010 - 3

Techniques

The world over, larger and larger organizations are
looking to Agile methodologies to lead them out of
the wasteful spending that plagues large scale
software development projects. These corporations
have the diffi cult challenge of re-skilling their people
to take advantages of these approaches. To do so, a
large number look to training and certifi cation to plug
the gap that experience has yet to fi ll.

Scrum was one of the founding approaches to Agile
software development, and continues to provide
a worthwhile core for the management side of
software development. Scrum Certifi cation schemes
have proven counterproductive, granting only a veneer
of competence, which often misleads teams into
a distorted experience of agility.

Integrated business processes now routinely span
multiple systems and even enterprises. This raises the
question of how these processes should be coordinated.
In our experience centralized orchestration solutions
are costly to implement and often fail to deliver the
promised benefi ts, which has lead us to prefer service
choreography as an approach.

The Web is a global data structure that enables us to
share information. However not all data is meant to
be shared by everyone and it’s important to be able
to share information on the Web in a disciplined and
governable manner without requiring massive centralized
infrastructure. OAuth provides a way of sharing
resources on the Web responsibly and securely. It is a
Web protocol (for Web browsers or machine-to-machine
interactions), which allows federated authorization
of access to Web resources. What’s interesting is
that OAuth is a simple protocol to implement and
utilize and yet its design goals match many common
enterprise authorization problems. OAuth remains
in the assessment category, however, because it
has fragmented, and the IETF has not yet drawn the
community back together under an Internet RFC.

Our understanding of the Web has matured to the point
where we believe it is a viable platform for building
distributed systems. RESTful techniques have advanced
past pretty URIs + JSON towards hypermedia systems
that project business protocols over the Internet
and support seamless business process and service
composition. The Web provides a powerful capability
for scale, resiliency, and ease of implementation with
commodity infrastructure like caches and Web servers
with commodity protocols (like HTTP, AtomPub, and
OAuth). Moving from trial to adopt is indicative of our
position that the Web is ready for primetime, not just
for Internet-facing systems but as a practical base for
enterprise systems delivery.

Signifi cant advances in the tools for automating
functional testing haven’t been replicated in the
technical testing space. Data management for
performance, load and soak testing is a particular issue.
However, the tools are improving and increased visibility
for these tools supports the early and often technical
testing that we advocate.

Scrum
certification

incremental data warehousing

OAuth

Lean software
development

Emergent
Design

Build pipelines

Evolutionary DB

Service
choreography

Web as
platformVisualization & metrics

Automation of technical tests

Polyglot programming

Hold Assess Trial Adopt

Continuous
deployment

Copyright © 2010 thoughtworks.com Technology Radar - April 2010 - 4

Tools

IT departments are increasingly striving to liberate data
from disparate systems. A broad set of approaches
have been promoted under the generic term Service
Oriented Architecture (SOA). This has led to confusion
about what the term and approach actually means. We
believe businesses do not need the complex enterprise
service bus products advocated by vendors. ESBs actively
undermine the reasons for choosing the bus approach:
low latency, loose coupling, and transparency.

In contrast we have seen considerable success with
Simple Message Buses where the integration problems
are solved at the end points, rather than inside a
vendor ESB system. The most well known Simple
Message Bus approach is one based on the principles
of REST and leveraging the proven scalability of the
web. However organizations that have already invested
in ESB infrastructure can leverage the useful parts of
that infrastructure (reliable messaging etc) while still
using a Simple Message Bus approach and performing
integrations at the edges of the system.

The hypermedia constraint from REST is now understood
as critical in sharing business protocols over the Web.
Unfortunately many frameworks for building computer-
to-computer systems on the Web are ignorant of this
constraint and tend towards simple CRUD systems.
Restfulie is the fi rst of a new generation of frameworks
that natively support hypermedia, for Ruby, Java, and
.NET. In Restfulie, business protocols are implemented
using DSLs and exposed across the Web through
hypermedia representations; clients drive those protocols
through a similar declarative mechanism, consuming
server-generated representations as they work towards a
business goal. As the fi rst framework of its kind, Restfulie
is opinionated and provides strict “training wheels” in order
to bootstrap newcomers. However, it is an empirical proof
that the Web and hypermedia can be used to orchestrate
complex business activities.

There continues to be signifi cant activity in the non-
relational database space. There are many different
models, and widespread understanding of the capabilities
of the different approaches is lacking. Thus, we still
believe that this technology needs to remain in the assess
ring, although we anticipate that this will change by the
time of the next radar.

Graph databases store information as interconnected
nodes with arbitrary relations rather than tables and
nameless relations. Graph databases are an excellent
choice for complex domains with semi-structured data
since they’re schema-less and highly extensible. Neo4j
is the front-runner in the graph database space being an
embedded Java component, which supports fast storage
and search of graphs for Java solutions (including server
applications). The Neo4j community is highly active and
now has a basic REST API enabling it as more general-

purpose database engine. Neo4j moving into the trial
category is representative of our experience trialling it
in real-world scenarios and the early successes we’ve
achieved.

Document-oriented databases treat each record as a
document with the ability to add any number of fi elds
of arbitrary size. A relatively large amount of the attention
that has been directed at document databases has landed
on mongoDB, a highly scalable option with support for
querying, indexing, replication and sharding. Beyond its
enterprise feature set, its popularity is aided by its driver
support for Java, Ruby, PHP, C#, Python and a number
of other languages.

Semantic Web W3C standards, and the tools
implementing them, are at last worthy of real attention.
RDF and RDFa allow anyone to say anything about
anything in a sharable, structured format. This proves a
much more powerful means of linking and structuring data
from disparate sources than the strictness of RDBMS, or
the mess that is unstructured Web data. Correspondingly
SPARQL is the query standard that allows information to
be mined from RDF marked-up data.

Subversion moves back into the Adopt section of the
radar because it is a solid version control tool suitable
for most teams. We consider Subversion’s features to
be the basic standard for a modern version control tool.
ThoughtWorkers continue to embrace and recommend
Distributed Version Control tools such as Git and
Mercurial, but we caution that these systems often require
deeper understanding to get the most out of them. New
to the radar is GitHub, a “social coding” tool supporting
both source code hosting and social networking. GitHub
is arguably one of the main reasons Git has become the
leading DVCS tool, and GitHub’s collaboration features
are often used by enterprises that need to support
distributed teams.

Language
workbenches

Subversion

Next-gen
test tools

Neo4j

ASP.NET MVC

Distributed
version control

RDF
triple
stores

NoSQL

Message buses
without smarts

Squid

Restfulie
mongoDB

GitHub

ESB

Visualization for
business data

HoldAssessTrialAdopt

Cross mobile
platforms

Copyright © 2010 thoughtworks.com Technology Radar - April 2010 - 5

Languages

Javascript as a
first-class language

Groovy

Functional
languages

DSL’s

Java Language end of life

C# 4.0

jRuby

F#

Scala

Clojure

HTML 5

Ruby

HoldAssessTrialAdopt
The past year or more has seen renewed
interest in the development of new
programming languages and the
expansion of existing language
feature-sets.

In the previous radar, we lumped
functional languages together in a
group. For this version, we’ve exploded
that group and started calling out the
ones interesting to us. Of the current
crop of functional languages, the one we
like the most is Clojure: a simple, elegant
implementation of Lisp on the JVM. The
other two that we fi nd interesting are Scala
(a re-thinking of Java in functional form) and
F#, the OCaml derivative from Microsoft that now
appears “in the box” in Visual Studio 2010.

Functional languages have a wide range of practical
uses, including simulation, computational fi nance,
computational science, large scale data processing
and parsing. These fi elds benefi t from functional
programming techniques that simplify concurrent
execution and the expression of complex mathematical
functions concisely. Functional programming requires
a shift in thinking for enterprise developers experienced
in object oriented development. Moving to an often terse
syntax for solving complex problems may initially be
intimidating to many. As with all forms of programming
languages, syntax is just one aspect of the language
itself. In functional programming another signifi cant
aspect is the use of common idioms. These idioms
speed code comprehension and increase overall
maintainability.

This might not be news to all, but it is worth noting
that dynamic languages are long ready for adoption
and trial. Ruby, particularly when deployed on JRuby,
is ready for adoption. ThoughtWorks uses Ruby and
JRuby extensively in both its Services and Product work.
Groovy is ready for trial and could prove more accessible
than Ruby/JRuby in a Java shop. For the right type of
applications, Ruby, JRuby, and Groovy prove far more
effective, expressive, and productive than Java and C#.

As we have discussed previously, the Java language
appears to be moving slowly as the Java community
waits for Java 7. Having waited for new language
features to surface for almost 3 years, the Java

community has
begun to innovate in new
languages that run on the Java
Virtual Machine, languages such as Groovy,
JRuby, Scala and Clojure. With the increase in
number of languages available on the JVM, we
expect enterprises to begin to assess the suitability of
reducing the amount of Java specifi c code developed
in their enterprise applications in favor of these newer
languages. This is not to say that enterprises should
outright abandon Java as a programming language,
we do however suggest that you look for alternatives
that may be more fi t for purpose in the area that new
development is taking place.

HTML 5 offers a large number of improvements over
HTML 4 and XHTML 1.0. Many of these improvements
are focused on providing support for developing complex
web applications, and improving integration of rich
content such as audio and video in standard ways.
Features such as client-side storage, web sockets and
offl ine use will further establish the position of the web
browser as a viable enterprise application platform.

Copyright © 2010 thoughtworks.com Technology Radar - April 2010 - 6

Platforms
While we have found that many of the components
necessary for scalable web enterprise architectures are
well known and stable, our focus in the platforms space
tends to the consumer side of the web. Web browsers and
mobile devices are each undergoing signifi cant changes
that are likely to drive the creation of new service offerings
for consumers and enterprises alike.

Internet browsers such as Google Chrome, Safari,
Opera and Firefox, have made serious inroads in the
implementation of the HTML 5 specifi cation. With these
advances it is now possible to experience many of
the improvements that HTML brings. Unfortunately so
far Microsoft has lagged on implementing these new
standards. We recommend that organizations favor
standards compliant browsers over IE8.

IE6 is a signifi cantly defi cient browser with many
documented security holes and should be phased out as
soon as possible. Browsers such as Firefox and Chrome
can be installed alongside IE, allowing the user to choose
which one to use. We recommend that organizations with
intranet applications that require IE6 consider using it only
for those specifi c applications, and install one of these
alongside for general use.

While .NET has proven itself as a solid platform, many
practitioners are dissatisfi ed with many of the default
Microsoft tools and practices. This has led to the growth
of the Alt.NET community, which champions techniques
that we fi nd more effective along with (usually open-
source) tools that better support them.

Large format mobile devices, such as the Apple iPad
and Amazon Kindle, provide a new model of ubiquitous
computing. Their long battery life, simple interfaces and
easy connectivity have the potential to change the way
we interact with computers. Apple’s new user interfaces
discard the familiar desktop metaphors of fi les and folders

that have been standard since the introduction of the
Macintosh in 1984.

Almost every enterprise has “legacy systems” that are
expensive to operate and upgrade. Often a system will
become legacy over the course of several years, through
neglect or atrophy. We recommend using platform
roadmaps to maximize the value of a systems portfolio
and plan for the upgrade and eventual retirement of
systems.

Facebook has become popular in part due to its rich API
and explosion of third-party applications. ThoughtWorks
is now starting to see our clients consider Facebook as
a business platform. In addition to having a Facebook
presence, businesses are building Facebook applications
that are tightly integrated with their own services and offer
useful functionality to Facebook users.

Web services are now widely used as an enabler for
service oriented architectures as well as for the integration
of existing applications. We see mature tools and largely
interoperable implementations for web service standards
covered by WS-I Basic Profi le, but we remain skeptical
about the proliferation and value of WS-* standards
beyond Basic Profi le.

Rich Internet Applications (RIA) are a popular topic,
driven by the effort and marketing of big vendors pushing
their offerings. RIA is useful for complex visualizations
but ill-suited for other programming tasks because it
doesn’t fully support the engineering hygiene we require
for our tools: testing is diffi cult and application partitioning
is cumbersome. These frameworks also don’t support
common elements we take for granted in applications
hosted in a browser: bookmarking, addressability, browser
controls, and other aspects. We’re not entirely critical
of these tools, but think that their sweet spot is rich
visualizations, not building traditional data entry CRUD
applications.

Google Web Toolkit (GWT) offers an interesting premise:
write Swing-like Java code and generate unit testable
JavaScript widgets and user interfaces. From a practical
standpoint this doesn’t work well. First, using code-gen
to produce the artifacts is time consuming, artifi cially
extending build times and requiring manual changes to
obtain optimal package layout. Second, if the JavaScript
doesn’t behave exactly as you want you will have to
hack the generated code. Third, using Java to generate
JavaScript means that you can’t take direct advantage of
the powerful features of JavaScript or numerous libraries
such as JQuery. Finally, the JUnit support is quite limited,
for example code using refl ection cannot be tested.

The Cloud continues to be of interest to us, with Software
as a Service the most mature cloud component. Platform
and Infrastructure as service offerings have reached
different levels of maturity, and we refl ect that in our
placement of EC2, Google App Engine and Azure.

Google as corporate platform

Large format mobile devices

IE8

GWT

Application
Appliances

Google App Engine mobile
web

Azure Rich
Internet
applications

JVM as
platform

IE6 end
of lifeandroid

facebook
as business
platform

EC2
& S3

Location
based
services

Cloud

iPhone

ALT.NET

Platform
roadmaps

WS-* beyond
basic profile

Hold Assess Trial Adopt

Copyright © 2010 thoughtworks.com Technology Radar - April 2010 - 7

References

ThoughtWorks is a global IT consultancy

R. C. Martin “Scrum / Agile’s inherit shortcomings?
Uncle Bob Martin’s 7 theses.” Scrum Users Yahoo!
Group. Feb 3, 2010. http://bit.ly/ca6wdF

M. Fowler. “Should there be a certification program for
agile methods?” martinfowler.com. April 30, 2004.
http://bit.ly/bwbbmp

“Service Choreography.” Wikipedia. April 4, 2010.
http://bit.ly/boGefH

J. Humble & D. Farley. “Continuous Delivery: A handbook
for building, deploying, testing and releasing software.”
Addison-Wesley Professional. April 9, 2010.
http://bit.ly/cssJu8

R. Fielding. “Architectural Styles and the Design of
Network-based Software Architectures.” University of
California, Irvine. 2000. http://bit.ly/blbUY6

J. Webber, S. Parastatidis & I. Robinson. “REST in
Practice: Hypermedia and Systems Architecture.”
O’Reilly Media. March 2010. http://oreil.ly/ccBtNK

M. Fowler. “Richardson Maturity Model: steps toward
the glory of REST.” martinfowler.com. March 18, 2010.
http://bit.ly/cmrXMJ

We deliver custom applications and provide consulting grounded in reality;
we help organizations become efficient through Agile and Lean practices and
principles. By hiring exceptional people, we can solve our clients’ biggest and
most pressing problems. All of our services are offered both on and offshore,
and are delivered with pride and passion.

E. Hammer-Lahav, Ed. “The OAuth 1.0 Protocol.” IETF.
February 5, 2010. http://bit.ly/bwLMDm

E. Sachs, A. Jain & P. Madsen. “Overlap of identity
technologies.” Google OAuth & Federated Login
Research. March 13, 2009. http://bit.ly/9upnqU

M. Fowler. “Version Control Tools.” martinfowler.com.
February 17, 2010. http://bit.ly/9a4NmU

S. Drobi. “Stuart Halloway on Clojure and Functional
Programming.” InfoQ. March 12, 2010.
http://bit.ly/daSclN

A. van Kesteren. “HTML5 differences from HTML4.”
W3C. March 4, 2010. http://bit.ly/bs0KDy

K. Ballinger et al. “WS-I Basic Profile Version 1.1.” Web
Services Interoperability Organization. April 10, 2006.
http://bit.ly/9XDUGL

J. Miller. “What is ALT.NET?” MSDN. March, 2008.
http://bit.ly/c8XWNg

M.Fowler. “AltNetConf.” martinfowler.com. October 9,
2007. http://bit.ly/atCex6

Copyright © 2010 thoughtworks.com Technology Radar - April 2010 - 8

