
Vol.22

An opinionated guide
to technology frontiers

 thoughtworks.com/radar
#TWTechRadar

TECHNOLOGY

RADAR

https://thght.works/2zgsQay
https://thght.works/3ccAYYy

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 2

The Technology Advisory Board (TAB) is a group of 20 or so senior technologists at
ThoughtWorks. The TAB meets twice a year face-to-face and bi-weekly by phone. Its
primary role is to be an advisory group for ThoughtWorks CTO, Rebecca Parsons.

The TAB acts as a broad body that can look at topics that affect technology and
technologists at ThoughtWorks. We usually create the Radar at face-to-face meetings, but
given the global pandemic we’ve been living through, this is the first Technology Radar to
be created via a virtual event.

Contributors
The Technology Radar is prepared by the
ThoughtWorks Technology Advisory Board

Erik
Dörnenburg

Evan
Bottcher

Rebecca
Parsons (CTO)

Fausto
de la Torre

Camilla
Crispim

Ni
Wang

Martin Fowler
(Chief Scientist)

Hao
Xu

Lakshminarasimhan
Sudarshan

Rachel
Laycock

Bharani
Subramaniam

Ian
Cartwright

Birgitta
Böckeler

Scott
Shaw

James
Lewis

Mike
Mason

Shangqi
Liu

Jonny
LeRoy

Neal
Ford

Zhamak
Dehghani

https://www.thoughtworks.com/profiles/erik-dornenburg
https://www.thoughtworks.com/profiles/evan-bottcher
https://www.thoughtworks.com/profiles/rebecca-parsons
https://www.thoughtworks.com/profiles/fausto-de-la-torre
https://www.thoughtworks.com/profiles/camilla-crispim
https://www.thoughtworks.com/profiles/ni-wang
https://www.thoughtworks.com/profiles/martin-fowler
https://www.thoughtworks.com/profiles/xu-hao
https://www.thoughtworks.com/profiles/lakshminarasimhan-sudarshan
https://www.thoughtworks.com/profiles/rachel-laycock
https://www.thoughtworks.com/profiles/bharani-subramaniam
https://www.thoughtworks.com/profiles/ian-cartwright
https://www.thoughtworks.com/profiles/birgitta-bockeler
https://www.thoughtworks.com/profiles/scott-shaw
https://www.thoughtworks.com/profiles/james-lewis
https://www.thoughtworks.com/profiles/mike-mason
https://www.thoughtworks.com/profiles/liu-shangqi
https://www.thoughtworks.com/profiles/jonny-leroy
https://www.thoughtworks.com/profiles/neal-ford
https://www.thoughtworks.com/profiles/zhamak-dehghani

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 3

About
the Radar
ThoughtWorkers are passionate about
technology. We build it, research it, test it, open
source it, write about it, and constantly aim to
improve it — for everyone. Our mission is to
champion software excellence and revolutionize
IT. We create and share the ThoughtWorks
Technology Radar in support of that mission.
The ThoughtWorks Technology Advisory
Board, a group of senior technology leaders at
ThoughtWorks, creates the Radar. They meet
regularly to discuss the global technology
strategy for ThoughtWorks and the technology
trends that significantly impact our industry.

The Radar captures the output of the
Technology Advisory Board’s discussions in a
format that provides value to a wide range of
stakeholders, from developers to CTOs. The
content is intended as a concise summary.

We encourage you to explore these technologies.
The Radar is graphical in nature, grouping items
into techniques, tools, platforms and languages
& frameworks. When Radar items could appear
in multiple quadrants, we chose the one that
seemed most appropriate. We further group
these items in four rings to reflect our current
position on them.

For more background on the Radar, see
thoughtworks.com/radar/faq.

https://thght.works/2WtQYyw

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 4

Hold HoldAssess AssessTrial TrialAdopt Adopt

Our Radar is forward looking. To make
room for new items, we fade items that
haven’t moved recently, which isn’t a
reflection on their value but rather on
our limited Radar real estate.

Hold
Proceed with caution.

Assess
Worth exploring with the goal of
understanding how it will affect your enterprise.

Trial
Worth pursuing. It’s important to understand how
to build up this capability. Enterprises can try this
technology on a project that can handle the risk.

Adopt
We feel strongly that the industry should
be adopting these items. We use them
when appropriate on our projects.

New

Moved in/out

No changeRadar at
a glance
The Radar is all about tracking interesting
things, which we refer to as blips. We organize
the blips in the Radar using two categorizing
elements: quadrants and rings. The quadrants
represent different kinds of blips. The rings
indicate what stage in an adoption lifecycle we
think they should be in.

A blip is a technology or technique that
plays a role in software development. Blips
are things that are ‘in motion’ — that is we
find their position in the Radar is changing
— usually indicating that we’re finding
increasing confidence in them as they move
through the rings.

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 5

Themes for this edition
The Elephant in the Zoom

“Necessity is the mother of invention”
— Proverb

Many companies have experimented
with the idea of remote working as the
technology to enable it has slowly matured.
But suddenly, a global pandemic has forced
companies all over the world to rapidly
and fundamentally change their way of
working to preserve some productivity. As
many have observed, “working from home”
is starkly different from “being forced to
work from home during a pandemic,” and
we think there will be a journey ahead to
become fully productive in this new context.

We’ve never believed that creating a Radar
remotely was possible, and yet here we are
— this is the first Radar we’ve ever produced
without meeting in person. Many of the
proposed blips spoke to the pressing need
to enable first-class remote collaboration.
We didn’t want to ignore the elephant in the
room and not comment on the crisis, but
doing a good job of remote-first collaboration
is a deep and nuanced subject and certainly
not all of our advice would fit in the Radar
format. So alongside this edition you’ll find a
podcast where we discuss our experiences
in creating the Radar remote-first, a written
experience report including advice on
remote-first productivity, a webinar covering
tech strategies in a crisis and links to other
ThoughtWorks materials, including our
remote working playbook. We hope that
these materials, together with other internet
resources, will help organizations that attempt
to navigate these unknown waters.

X is Software Too

We often encourage other parts of the
software delivery ecosystem to adopt
beneficial engineering practices pioneered
by agile software development teams; we
return to this topic so often because we
keep finding niches where we see slow
progress on this advice. For this Radar, we
decided to call out again infrastructure as
code as well as pipelines as code, and we
also had a number of conversations about
infrastructure configurations, ML pipelines
and other related areas. We find that the
teams who commonly own these areas do
not embrace enduring engineering practices
such as applying software design principles,
automation, continuous integration, testing,
and so on. We understand that many
factors hamper fast movement for some
engineering practices: complexity (both
essential and accidental), lack of knowledge,
political impediments, lack of suitable tooling
and many others. However, the benefits to
organizations that embrace agile software
delivery practices are clear and worth some
effort to achieve.

Data Perspectives Maturing
and Expanding

A theme that spanned many blips and
quadrants in this edition concerned
maturity in data, particularly techniques
and tools surrounding analytical data
and machine learning. We note many
continuing innovations in the natural
language processing (NLP) space. We also
welcome both the emergence and continuing
maturity of full-lifecycle machine learning
tool suites, combining enduring engineering
practices with combinations of tools that
work well in an iterative manner, showing
that “machine learning is software too.”
Finally, for distributed architectures such as
microservices, we see great interest in data
mesh as a way to effectively serve and use
analytical data at scale in distributed systems.
As the industry thinks more diligently about
how data should work in modern systems,
we’re encouraged by the general direction
and opening perspectives in this arena and
expect to see exciting innovations in the near
future.

Kubernetes & Co. Cambrian
Explosion

As Kubernetes continues to consolidate its
market dominance, the inevitable supporting
ecosystem thrives. We discussed a number
of blips surrounding Kubernetes in the
tools, platforms and techniques quadrants,
showing just how pervasive this subject
has become. For example, Lens and k9s
simplify cluster management, kind helps with
local testing and Gloo offers an alternative
API Gateway. Hydra is an OAuth server
optimized to run on Kubernetes, and Argo
CD uses Kuberenetes native desired-state
management to implement a CD server.
These developments indicate Kubernetes
is perfectly poised to create a supporting
ecosystem; it offers critical capabilities but
with abstractions that are often too low
level or advanced for most users. Thus,
the complexity void fills with tooling to
either ease the configuration and the use
of Kubernetes or supply something missing
from the core functionality. As Kubernetes
continues to dominate, we see a rich
ecosystem growing and expanding to take
advantage of its strengths and address its
weaknesses. As this ecosystem matures,
we expect it to evolve toward a new set of
higher-level abstractions offering the benefits
of Kubernetes without the bewildering range
of options.

http://www.thoughtworks.com/podcasts/lessons-remote-tech-radar
http://www.thoughtworks.com/podcasts/lessons-remote-tech-radar
https://www.thoughtworks.com/tech-strategies-in-a-crisis
https://www.thoughtworks.com/tech-strategies-in-a-crisis
https://files.thoughtworks.com/pdfs/Books/Remote_Work_Playbook.pdf
https://thoughtworks.com/radar/techniques/infrastructure-as-code
https://thoughtworks.com/radar/techniques/infrastructure-as-code
https://thoughtworks.com/radar/techniques/pipelines-as-code
https://thoughtworks.com/radar/techniques/transfer-learning-for-nlp
https://thoughtworks.com/radar/languages-and-frameworks/ernie
https://thoughtworks.com/radar/techniques/continuous-delivery-for-machine-learning-cd4ml
https://thoughtworks.com/radar/tools/dvc
https://thoughtworks.com/radar/tools/experiment-tracking-tools-for-machine-learning
https://thoughtworks.com/radar/techniques/data-mesh
https://thoughtworks.com/radar/techniques/data-mesh
https://thoughtworks.com/radar/tools/lens
https://thoughtworks.com/radar/tools/k9s
https://thoughtworks.com/radar/tools/kind
https://thoughtworks.com/radar/tools/gloo
https://thoughtworks.com/radar/platforms/hydra
https://thoughtworks.com/radar/platforms/argo-cd
https://thoughtworks.com/radar/platforms/argo-cd

84

Hold HoldAssess AssessTrial TrialAdopt Adopt

3 4

27

17

23

24

26

12

5

16

10

19

20

25

21

22

27

18

15

6

88

81

82

90

91

92
93

94

95

96

97

31

39

40

41

42

43

44

49 45

46 47 48

33
34

29

30

32

35

36
38

77

80

83

86

85

89

78

79

87

98

1

8

9

11

14
13

52

67 68

69
70

71

72

73

74

75

76

53 55

57
58

59

60

63

65

66

28

37

50
51

56

61
62

64

54

Adopt
1. Applying product management to internal

platforms
2. Infrastructure as code
3. Micro frontends
4. Pipelines as code
5. Pragmatic remote pairing
6. Simplest possible feature toggle

Trial
7. Continuous delivery for machine learning (CD4ML)
8. Ethical bias testing
9. GraphQL for server-side resource aggregation
10. Micro frontends for mobile
11. Platform engineering product teams
12. Security policy as code
13. Semi-supervised learning loops
14. Transfer learning for NLP
15. Use “remote native” processes and approaches
16. Zero trust architecture (ZTA)

Assess
17. Data mesh
18. Decentralized identity
19. Declarative data pipeline definition
20. DeepWalk
21. Managing stateful systems via container

orchestration
22. Preflight builds

Hold
23. Cloud lift and shift
24. Legacy migration feature parity
25. Log aggregation for business analytics
26. Long-lived branches with Gitflow
27. Snapshot testing only

Adopt
28. .NET Core
29. Istio

Trial
30. Anka
31. Argo CD
32. Crowdin
33. eBPF
34. Firebase
35. Hot Chocolate
36. Hydra
37. OpenTelemetry
38. Snowflake

Assess
39. Anthos
40. Apache Pulsar
41. Cosmos
42. Google BigQuery ML
43. JupyterLab
44. Marquez
45. Matomo
46. MeiliSearch
47. Stratos
48. Trillian

Hold
49. Node overload

Adopt
50. Cypress
51. Figma

Trial
52. Dojo
53. DVC
54. Experiment tracking tools

for machine learning
55. Goss
56. Jaeger
57. k9s
58. kind
59. mkcert
60. MURAL
61. Open Policy Agent (OPA)
62. Optimal Workshop
63. Phrase
64. ScoutSuite
65. Visual regression testing tools
66. Visual Studio Live Share

Assess
67. Apache Superset
68. AsyncAPI
69. ConfigCat
70. Gitpod
71. Gloo
72. Lens
73. Manifold
74. Sizzy
75. Snowpack
76. tfsec

Hold

Adopt
77. React Hooks
78. React Testing Library
79. Vue.js

Trial
80. CSS-in-JS
81. Exposed
82. GraphQL Inspector
83. Karate
84. Koin
85. NestJS
86. PyTorch
87. Rust
88. Sarama
89. SwiftUI

Assess
90. Clinic.js Bubbleprof
91. Deequ
92. ERNIE
93. MediaPipe
94. Tailwind CSS
95. Tamer
96. Wire
97. XState

Hold
98. Enzyme

The Radar
Te

ch
ni

qu
es

Tools
Languages &

 Fram
ew

orks
Pl

at
fo

rm
s

New Moved in/out No change

Techniques
TECHNOLOGY RADAR Vol. 22

© ThoughtWorks, Inc. All Rights Reserved.

8 | TECHNOLOGY RADAR

Applying product management
to internal platforms
Adopt

More and more companies are building
internal platforms to roll out new digital
solutions quickly and efficiently. Companies
that succeed with this strategy are applying
product management to internal platforms.
This means establishing empathy with
internal consumers (the development teams)
and collaborating with them on the design.
Platform product managers create roadmaps
and ensure the platform delivers value to
the business and enhances the developer
experience. Unfortunately, we’re also
seeing less successful approaches, where
teams create a platform in the void, based
on unverified assumptions and without
internal customers. These platforms, often
despite aggressive internal tactics, end
up being underutilized and a drain on the
organization’s delivery capability. As usual,
good product management is all about
building products that consumers love.

Infrastructure as code
Adopt

Although infrastructure as code is a
relatively old technique (we’ve featured
it in the Radar in 2011), it has become
vitally important in the modern cloud era
where the act of setting up infrastructure
has become the passing of configuration
instructions to a cloud platform. When we
say “as code” we mean that all the good
practices we’ve learned in the software
world should be applied to infrastructure.
Using source control, adhering to
the DRY principle, modularization,

Adopt
1. Applying product management

to internal platforms
2. Infrastructure as code
3. Micro frontends
4. Pipelines as code
5. Pragmatic remote pairing
6. Simplest possible feature

toggle

Trial
7. Continuous delivery for

machine learning (CD4ML)
8. Ethical bias testing
9. GraphQL for server-side

resource aggregation
10. Micro frontends for mobile
11. Platform engineering product

teams
12. Security policy as code
13. Semi-supervised learning loops
14. Transfer learning for NLP
15. Use “remote native” processes

and approaches
16. Zero trust architecture (ZTA)

Assess
17. Data mesh
18. Decentralized identity
19. Declarative data pipeline

definition
20. DeepWalk
21. Managing stateful systems via

container orchestration
22. Preflight builds

Hold
23. Cloud lift and shift
24. Legacy migration feature parity
25. Log aggregation for business

analytics
26. Long-lived branches with

Gitflow
27. Snapshot testing only

Techniques

maintainability, and using automated
testing and deployment are all critical
practices. Those of us with a deep software
and infrastructure background need to
empathize with and support colleagues
who do not. Saying “treat infrastructure like
code” isn’t enough; we need to ensure the
hard-won learnings from the software world
are also applied consistently throughout the
infrastructure realm.

Micro frontends
Adopt

We’ve seen significant benefits from
introducing microservices, which have

allowed teams to scale the delivery of
independently deployed and maintained
services. Unfortunately, we’ve also seen
many teams create a front-end monolith —
a large, entangled browser application that
sits on top of the back-end services — largely
neutralizing the benefits of microservices.
Micro frontends have continued to gain in
popularity since they were first introduced.
We’ve seen many teams adopt some form
of this architecture as a way to manage
the complexity of multiple developers
and teams contributing to the same user
experience. In June of last year, one of the
originators of this technique published an
introductory article that serves as a reference
for micro frontends. It shows how this style

84

Hold HoldAssess AssessTrial TrialAdopt Adopt

3 4

27

17

23

24

26

12

5

16

10

19

20

25

21

22

27

18

15

6

88

81

82

90

91

92
93

94

95

96

97

31

39

40

41

42

43

44

49 45

46 47 48

33
34

29

30

32

35

36
38

77

80

83

86

85

89

78

79

87

98

1

8

9

11

14
13

52

67 68

69
70

71

72

73

74

75

76

53 55

57
58

59

60

63

65

66

28

37

50
51

56

61
62

64

54

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/micro-frontends.html

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 9

is more than just training models and
serving them. It requires implementing end-
to-end and continuously repeatable cycles
of training, testing, deploying, monitoring
and operating the models. Continuous
delivery for machine learning (CD4ML) is
a technique that enables reliable end-to-
end cycles of development, deploying and
monitoring machine learning models. The
underpinning technology stack to enable
CD4ML includes tooling for accessing
and discovering data, version control of
artefacts (such as data, model and code),
continuous delivery pipelines, automated
environment provisioning for various
deployments and experiments, model
performance assessment and tracking, and
model operational observability. Companies
can choose their own tool set depending on
their existing tech stack. CD4ML emphasizes
automation and removing manual handoffs.
CD4ML is our de facto approach for
developing ML models.

Ethical bias testing
Trial

Over the past year, we’ve seen a shift in
interest around machine learning and deep
neural networks in particular. Until now,
tool and technique development has been
driven by excitement over the remarkable
capabilities of these models. Currently,
though, there is rising concern that these
models could cause unintentional harm.
For example, a model could be trained
inadvertently to make profitable credit
decisions by simply excluding disadvantaged
applicants. Fortunately, we’re seeing a
growing interest in ethical bias testing that
will help to uncover potentially harmful
decisions. Tools such as lime, AI Fairness 360
or What-If Tool can help uncover inaccuracies
that result from underrepresented groups
in training data and visualization tools such
as Google Facets or Facets Dive can be
used to discover subgroups within a corpus

can be implemented using various web
programming mechanisms and builds out
an example application using React.js. We’re
confident this style will grow in popularity
as larger organizations try to decompose UI
development across multiple teams.

Pipelines as code
Adopt

The pipelines as code technique emphasizes
that the configuration of delivery pipelines
that build, test and deploy our applications
or infrastructure should be treated as
code; they should be placed under source
control and modularized in reusable
components with automated testing and
deployment. As organizations move to
decentralized autonomous teams building
microservices or micro frontends, the need
for engineering practices in managing
pipelines as code increases to keep building
and deploying software consistent within
the organization. This need has given rise
to delivery pipeline templates and tooling
that enable a standardized way to build and
deploy services and applications. Such tools
use the declarative delivery pipelines of
applications, adopting a pipeline blueprint
to execute the underlying tasks for various
stages of a delivery lifecycle such as build,
test and deployment; and they abstract away
implementation details. The ability to build,
test and deploy pipelines as code should be
one of the evaluation criteria for choosing a
CI/CD tool.

Pragmatic remote pairing
Adopt

We firmly believe that pair programming
improves the quality of code, spreads
knowledge throughout a team and allows
overall faster delivery of software. In a post
COVID-19 world, however, many software
teams will be distributed or fully remote, and

in this situation we recommend pragmatic
remote pairing: adjusting pairing practices
to what’s possible given the tools at hand.
Consider tools such as Visual Studio Live
Share for efficient, low-latency collaboration.
Only resort to pixel-sharing if both participants
reside in relative geographic proximity and
have high-bandwidth internet connections.
Pair developers who are in similar time zones
rather than expecting pairing to work between
participants regardless of their location. If
pairing isn’t working for logistical reasons,
fall back to practices such as individual
programming augmented via code reviews,
pull-request collaboration (but beware long-
lived branches with Gitflow) or shorter pairing
sessions for critical parts of the code. We’ve
engaged in remote pairing for years, and
we’ve found it to be effective if done with a
dose of pragmatism.

Simplest possible feature toggle
Adopt

Unfortunately, feature toggles are less
common than we’d like, and quite often
we see people mixing up its types and use
cases. It’s quite common to come across
teams that use heavyweight platforms
such as LaunchDarkly to implement
feature toggles, including release toggles,
to benefit from Continuous Integration,
when all you need are if/else conditionals.
Therefore, unless you need A/B testing
or canary release or hand over feature
release responsibility to business folks, we
encourage you to use the simplest possible
feature toggle instead of unnecessarily
complex feature toggle frameworks.

Continuous delivery for machine
learning (CD4ML)
Trial

Applying machine learning to make the
business applications and services intelligent

Techniques

We firmly believe in pair
programming. But in a
post COVID-19, remote-
working world, successful
pairing requires a healthy
dose of pragmatism to be
effective.

(Pragmatic remote pairing)

We encourage you
to use the simplest
possible feature toggle
instead of unnecessarily
complex feature toggle
frameworks.

(Simplest possible feature
toggle)

https://martinfowler.com/articles/cd4ml.html
https://martinfowler.com/articles/cd4ml.html
https://github.com/marcotcr/lime
https://aif360.mybluemix.net/
https://thoughtworks.com/radar/tools/what-if-tool
https://ai.googleblog.com/2017/07/facets-open-source-visualization-tool.html
https://pair-code.github.io/facets/
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://martinfowler.com/articles/microservices.html
https://thoughtworks.com/radar/techniques/micro-frontends
https://martinfowler.com/articles/on-pair-programming.html
https://thoughtworks.com/radar/tools/visual-studio-live-share
https://thoughtworks.com/radar/tools/visual-studio-live-share
https://thoughtworks.com/radar/techniques/long-lived-branches-with-gitflow
https://thoughtworks.com/radar/techniques/long-lived-branches-with-gitflow
https://martinfowler.com/articles/feature-toggles.html
https://launchdarkly.com/
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/bliki/CanaryRelease.html

© ThoughtWorks, Inc. All Rights Reserved.

10 | TECHNOLOGY RADAR

of training data. We’ve used lime (local
interpretable model-agnostic explanations)
in addition to this technique in order to
understand the predictions of any machine-
learning classifier and what classifiers (or
models) are doing.

GraphQL for server-side
resource aggregation
Trial

We see more and more tools such as Apollo
Federation that can aggregate multiple
GraphQL endpoints into a single graph.
However, we caution against misusing
GraphQL, especially when turning it into a
server-to-server protocol. Our practice is
to use GraphQL for server-side resource
aggregation only. When using this pattern,
the microservices continue to expose well-
defined RESTful APIs, while under-the-hood
aggregate services or BFF (Backend for
Frontends) patterns use GraphQL resolvers
as the implementation for stitching
resources from other services. The shape
of the graph is driven by domain-modeling
exercises to ensure ubiquitous language
is limited to subgraphs where needed (in
the case of one-microservice-per-bounded-
context). This technique simplifies the
internal implementation of aggregate
services or BFFs, while encouraging good
modeling of services to avoid anemic REST.

Micro frontends for mobile
Trial

Since introducing it in the Radar in 2016,
we’ve seen widespread adoption of micro
frontends for web UIs. Recently, however,
we’ve seen projects extend this architectural
style to include micro frontends for mobile
applications as well. When the application
becomes sufficiently large and complex,
it becomes necessary to distribute the
development over multiple teams. This

presents the challenge of maintaining team
autonomy while integrating their work into
a single app. Although we’ve seen teams
writing their own frameworks to enable this
development style, existing modularization
frameworks such as Atlas and Beehive can
also simplify the problem of integrating
multiteam app development.

Platform engineering product
teams
Trial

The adoption of cloud and DevOps — while
increasing the productivity of teams who
can now move more quickly with reduced
dependency on centralized operations teams
and infrastructure — also has constrained
teams that lack the skills to self-manage a
full application and operations stack. Some
organizations have tackled this challenge by
creating platform engineering product teams.
These teams maintain an internal platform
that enables delivery teams to deploy and
operate systems with reduced lead time and
stack complexity. The emphasis here is on API-
driven self-service and supporting tools, with
delivery teams still responsible for supporting
what they deploy onto the platform.
Organizations that consider establishing such
a platform team should be very cautious not
to accidentally create a separate DevOps
team, nor should they simply relabel their
existing hosting and operations structure
as a platform. If you’re wondering how to
best set up platform teams, we’ve been
using the concepts from Team Topologies
to split platform teams in our projects into
enablement teams, core “platform within a
platform” teams and stream-focused teams.

Security policy as code
Trial

Security policies are rules and procedures
that protect our systems from threats and

disruption. For example, access control
policies define and enforce who can access
which services and resources under what
circumstances; or network security policies
can dynamically limit the traffic rate to a
particular service. The complexity of the
technology landscape today demands
treating security policy as code: define
and keep policies under version control,
automatically validate them, automatically
deploy them and monitor their
performance. Tools such as Open Policy
Agent or platforms such as Istio provide
flexible policy definition and enforcement
mechanisms that support the practice of
security policy as code.

Semi-supervised learning loops
Trial

Semi-supervised learning loops are a class
of iterative machine-learning workflows that
take advantage of the relationships to be
found in unlabeled data. These techniques
may improve models by combining labeled
and unlabeled data sets in various ways. In
other cases they compare models trained
on different subsets of the data. Unlike
either unsupervised learning where a
machine infers classes in unlabeled data or
supervised techniques where the training
set is entirely labeled, semi-supervised
techniques take advantage of a small set
of labeled data and a much larger set of
unlabeled data. Semi-supervised learning
is also closely related to active learning
techniques where a human is directed to
selectively label ambiguous data points.
Since expert humans that can accurately
label data are a scarce resource and
labeling is often the most time-consuming
activity in the machine-learning workflow,
semi-supervised techniques lower the cost
of training and make machine learning
feasible for a new class of users. We’re also
seeing the application of weakly supervised
techniques where machine-labeled data

Techniques

There is rising concern
that some machine-
learning models could
cause unintentional harm.
Fortunately, we’re seeing a
growing interest in ethical
bias testing that will help
to uncover potentially
harmful decisions.

(Ethical bias testing)

Micro frontends have
been widely adopted for
Web UIs. Now we’re seeing
this architectural style
come to mobile too.

(Micro frontends for mobile)

https://www.apollographql.com/docs/apollo-server/federation/introduction/
https://www.apollographql.com/docs/apollo-server/federation/introduction/
https://thoughtworks.com/radar/languages-and-frameworks/graphql
https://thoughtworks.com/radar/techniques/graphql-for-server-side-resource-aggregation
https://thoughtworks.com/radar/techniques/graphql-for-server-side-resource-aggregation
https://thoughtworks.com/radar/techniques/bff-backend-for-frontends
https://thoughtworks.com/radar/techniques/bff-backend-for-frontends
https://thoughtworks.com/radar/techniques/anemic-rest
https://thoughtworks.com/radar/techniques/micro-frontends
https://thoughtworks.com/radar/techniques/micro-frontends
https://thoughtworks.com/radar/languages-and-frameworks/atlas-and-beehive
https://thoughtworks.com/radar/techniques/separate-devops-team
https://thoughtworks.com/radar/techniques/separate-devops-team
https://thoughtworks.com/radar/platforms/superficial-private-cloud
https://teamtopologies.com/
https://thoughtworks.com/radar/tools/open-policy-agent-opa
https://thoughtworks.com/radar/tools/open-policy-agent-opa
https://thoughtworks.com/radar/platforms/istio

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 11

is used but is trusted less than the data
labeled by humans.

Transfer learning for NLP
Trial

We had this technique in Assess previously.
The innovations in the NLP landscape
continue at a great pace, and we’re able to
leverage these innovations in our projects
thanks to the ubiquitous transfer learning
for NLP. The GLUE benchmark (a suite
of language understanding tasks) scores
have seen dramatic progress over the past
couple of years with average scores moving
from 70.0 at launch to some of the leaders
crossing 90.0 as of April 2020. A lot of our
projects in the NLP domain are able to
make significant progress by starting from
pretrained models from ELMo, BERT, and
ERNIE, among others, and then fine-tuning
them based on the project needs.

Use “remote native” processes
and approaches
Trial

Distributed teams come in many shapes and
setups; delivery teams in a 100% single-site
co-located setup, however, have become the
exception for us. Most of our teams are either
multisite teams or have at least some team
members working off-site. Therefore, using
“remote native” processes and approaches by
default can help significantly with the overall
team flow and effectiveness. This starts with
making sure that everybody has access to
the necessary remote systems. Moreover,
using tools such as Visual Studio Live Share,
MURAL or Jamboard turn online workshops
and remote pairing into routines instead of
ineffective exceptions. But “remote native”
goes beyond a lift-and-shift of co-location
practices to the digital world: Embracing more
asynchronous communication, even more
discipline around decision documentation,

and “everybody always remote” meetings
are other approaches our teams practice by
default to optimize for location fluidity.

Zero trust architecture (ZTA)
Trial

The technology landscape of organizations
today is increasingly more complex with
assets — data, functions, infrastructure and
users — spread across security boundaries,
such as local hosts, multiple cloud providers
and a variety of SaaS vendors. This demands
a paradigm shift in enterprise security
planning and systems architecture, moving
from static and slow-changing security policy
management, based on trust zones and
network configurations, to dynamic, fine-
grained security policy enforcement based on
temporal access privileges.

Zero trust architecture (ZTA) is an
organization’s strategy and journey to
implement zero-trust security principles
for all of their assets — such as devices,
infrastructure, services, data and users —
and includes implementing practices such
as securing all access and communications
regardless of the network location, enforcing
policies as code based on the least privilege
and as granular as possible, and continuous
monitoring and automated mitigation of
threats. Our Radar reflects many of the
enabling techniques such as security policy
as code, sidecars for endpoint security and
BeyondCorp. If you’re on your journey toward
ZTA, refer to the NIST ZTA publication to learn
more about principles, enabling technology
components and migration patterns as well as
Google’s publication on BeyondProd.

Data mesh
Assess

Data mesh is an architectural and
organizational paradigm that challenges the

age-old assumption that we must centralize
big analytical data to use it, have data all in
one place or be managed by a centralized
data team to deliver value. Data mesh
claims that for big data to fuel innovation,
its ownership must be federated among
domain data owners who are accountable
for providing their data as products (with
the support of a self-serve data platform to
abstract the technical complexity involved in
serving data products); it must also adopt a
new form of federated governance through
automation to enable interoperability
of domain-oriented data products.
Decentralization, along with interoperability
and focus on the experience of data
consumers, are key to the democratization of
innovation using data.

If your organization has a large number of
domains with numerous systems and teams
generating data or a diverse set of data-driven
use cases and access patterns, we suggest
you assess data mesh. Implementation of
data mesh requires investment in building a
self-serve data platform and embracing an
organizational change for domains to take
on the long-term ownership of their data
products, as well as an incentive structure that
rewards domains serving and utilizing data as
a product.

Decentralized identity
Assess

Since the birth of the internet, the technology
landscape has experienced an accelerated
evolution toward decentralization. While
protocols such as HTTP and architectural
patterns such as microservices or data mesh
enable decentralized implementations,
identity management remains centralized. The
emergence of distributed ledger technology
(DLT), however, provides the opportunity to
enable the concept of decentralized identity. In
a decentralized identity system, entities — that
is, discrete identifiable units such as people,

Techniques

Zero trust architectures
stress the importance of
securing all access and
communications and
enforcing policies as
code based on the least
privilege.

(Zero trust architecture (ZTA))

https://thoughtworks.com/radar/techniques/bert
https://thoughtworks.com/radar/languages-and-frameworks/ernie
https://www.martinfowler.com/articles/remote-or-co-located.html
https://www.martinfowler.com/articles/remote-or-co-located.html
https://thoughtworks.com/radar/tools/visual-studio-live-share
https://thoughtworks.com/radar/tools/mural
https://gsuite.google.com/products/jamboard/
https://thoughtworks.com/radar/techniques/security-policy-as-code
https://thoughtworks.com/radar/techniques/security-policy-as-code
https://thoughtworks.com/radar/techniques/sidecars-for-endpoint-security
https://thoughtworks.com/radar/techniques/beyondcorp
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207-draft2.pdf
https://cloud.google.com/security/beyondprod
https://martinfowler.com/articles/data-monolith-to-mesh.html
https://martinfowler.com/articles/microservices.html
https://thoughtworks.com/radar/techniques/data-mesh

© ThoughtWorks, Inc. All Rights Reserved.

12 | TECHNOLOGY RADAR

organizations and things — are free to use any
shared root of trust. In contrast, conventional
identity management systems are based on
centralized authorities and registries such
as corporate directory services, certificate
authorities or domain name registries.

The development of decentralized identifiers
— globally unique, persistent and self-
sovereign identifiers that are cryptographically
verifiable — is a major enabling standard.
Although scaled implementations of
decentralized identifiers in the wild are
still rare, we’re excited by the premise of
this movement and have started using the
concept in our architecture. For the latest
experiments and industry collaborations,
check out Decentralized Identity Foundation.

Declarative data pipeline
definition
Assess

Many data pipelines are defined in a large,
more or less imperative script written in
Python or Scala. The script contains the
logic of the individual steps as well as the
code chaining the steps together. When
faced with a similar situation in Selenium
tests, developers discovered the Page
Object pattern, and later many behavior-
driven development (BDD) frameworks
implemented a split between step
definitions and their composition. Some
teams are now experimenting with bringing
the same thinking to data engineering.
A separate declarative data pipeline
definition, maybe written in YAML, contains
only the declaration and sequence of steps.
It states input and output data sets but
refers to scripts if and when more complex
logic is needed. With A La Mode, we’re
seeing the first open source tool appear in
this space.

DeepWalk
Assess

DeepWalk is an algorithm that helps
apply machine learning on graphs. When
working on data sets that are represented
as graphs, one of the key problems is
to extract features from the graph. This
is where DeepWalk can help. It uses
SkipGram to construct node embeddings
by viewing the graph as a language
where each node is a unique word in
the language and random walks of finite
length on the graph constitutes a sentence.
These embeddings can then be used by
various ML models. DeepWalk is one of
the techniques we’re trialling on some of
our projects where we’ve needed to apply
machine learning on graphs.

Managing stateful systems via
container orchestration
Assess

We recommend caution in managing
stateful systems via container orchestration
platforms such as Kubernetes. Some
databases are not built with native support
for orchestration — they don’t expect a
scheduler to kill and relocate them to a
different host. Building a highly available
service on top of such databases is not
trivial, and we still recommend running
them on bare metal hosts or a virtual
machine (VM) rather than to force-fit them
into a container orchestration platform.

Preflight builds
Assess

Even though we strongly advocate in favor
of CI rather than Gitflow, we know that
committing straight to the trunk and running

the CI on a master branch can be ineffective
if the team is too big, the builds are slow or
flaky, or the team lacks the discipline to run
the full test suite locally. In this situation a red
build can block multiple devs or pairs of devs.
Instead of fixing the underlying root cause —
slow builds, the inability to run tests locally
or monolithic architectures that necessitate
many people working in the same area
— teams usually rely on feature branches
to bypass these issues. We discourage
feature branches, given they may require
significant effort to resolve merge conflicts,
and they introduce longer feedback loops
and potential bugs during conflict resolution.
Instead, we propose using preflight builds as
an alternative: these are pull request–based
builds for “micro branches” that live only for
the duration of the pipeline run, with the
branch opened for every commit. To help
automate this workflow, we’ve come across
bots such as Bors, which automates merging
to master and branch deletion in case the
mini branch build succeeds. We’re assessing
this flow, and you should too; but don’t use
this to solve the wrong problem, as it can
lead to misuse of branches and may cause
more harm than benefit.

Cloud lift and shift
Hold

It is rather curious, that after over a decade
of industry experience with cloud migration,
we still feel it’s necessary to call out cloud
lift and shift, a practice that views the cloud
simply as a hosting solution, resulting in
the replication of an existing architecture,
security practices and IT operational models
in the cloud. This fails to realize the cloud’s
promises of agility and digital innovation. A
cloud migration requires intentional change
across multiple axes toward a cloud-native
state, and depending on the unique migration

Techniques

The foundation of BitCoin
— distributed ledger
technology (DLT) — is
enabling the emergence of
decentralized identities.

(Decentralized identity)

When working on data
sets that are represented
as graphs, one of the key
problems is to extract
features from the graph.
This is where DeepWalk
can help.

(DeepWalk)

https://www.w3.org/TR/did-core/
https://identity.foundation/
https://github.com/binaryaffairs/a-la-mode
https://github.com/phanein/deepwalk
https://thoughtworks.com/radar/techniques/gitflow
https://trunkbaseddevelopment.com/committing-straight-to-the-trunk/
https://bors.tech/

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 13

circumstances, each organization might
end up somewhere on the spectrum from
cloud lift and shift to cloud native. Systems
architecture, for example, is one of the
pillars of delivery agility and often requires
change. The temptation to simply lift and shift
existing systems as containers to the cloud
can be strong. While this tactic can speed up
cloud migration, it falls short when it comes
to creating agility and delivering features
and value. Enterprise security in the cloud
is fundamentally different from traditional
perimeter-based security through firewalls
and zoning, and it demands a journey toward
zero trust architecture. The IT operating model
too has to be reformed to safely provide
cloud services through self-serve automated
platforms and empower teams to take more
of the operational responsibility and gain
autonomy. Last but not least, organizations
must build a foundation to enable continuous
change, such as creating pipelines with
continuous testing of applications and
infrastructure as a part of the migration.
These will help the migration process, result in
a more robust and well-factored system and
give organizations a way to continue to evolve
and improve their systems.

Legacy migration feature parity
Hold

We find that more and more organizations
need to replace aging legacy systems to keep
up with the demands of their customers
(both internal and external). One antipattern
we keep seeing is legacy migration feature
parity, the desire to retain feature parity
with the old. We see this as a huge missed
opportunity. Often the old systems have
bloated over time, with many features
unused by users (50% according to a 2014

Standish Group report) and business
processes that have evolved over time.
Replacing these features is a waste. Our
advice: Convince your customers to take a
step back and understand what their users
currently need and prioritize these needs
against business outcomes and metrics
— which often is easier said than done.
This means conducting user research and
applying modern product development
practices rather than simply replacing the
existing ones.

Log aggregation for business
analytics
Hold

Several years ago, a new generation of log
aggregation platforms emerged that were
capable of storing and searching over vast
amounts of log data to uncover trends and
insights in operational data. Splunk was
the most prominent but by no means the
only example of these tools. Because these
platforms provide broad operational and
security visibility across the entire estate of
applications, administrators and developers
have grown increasingly dependent on them.
This enthusiasm spread as stakeholders
discovered that they could use log aggregation
for business analytics. However, business
needs can quickly outstrip the flexibility and
usability of these tools. Logs intended for
technical observability are often inadequate
to infer deep customer understanding.
We prefer either to use tools and metrics
designed for customer analytics or to take a
more event-driven approach to observability
where both business and operational events
are collected and stored in a way they can be
replayed and processed by more purpose-
built tools.

Long-lived branches with Gitflow
Hold

Five years ago we highlighted the problems
with long-lived branches with Gitflow.
Essentially, long-lived branches are the
opposite of continuously integrating all
changes to the source code, and in our
experience continuous integration is the
better approach for most kinds of software
development. Later we extended our caution
to Gitflow itself, because we saw teams using
it almost exclusively with long-lived branches.
Today, we still see teams in settings where
continuous delivery of web-based systems
is the stated goal being drawn to long-lived
branches. So we were delighted that the
author of Gitflow has now added a note to his
original article, explaining that Gitflow was not
intended for such use cases.

Snapshot testing only
Hold

The value of snapshot testing is undeniable
when working with legacy systems by
ensuring that the system continues to work
and the legacy code doesn’t break. However,
we’re seeing the common, rather harmful
practice of using snapshot testing only as
the primary test mechanism. Snapshot tests
validate the exact result generated in the
DOM by a component, not the component’s
behavior; therefore, it can be weak and
unreliable, fostering the “only delete the
snapshot and regenerate it” bad practice.
Instead, you should test the logic and
behavior of the components emulating what
users would do. This mindset is encouraged
by tools in the Testing Library family.

Techniques

Logs intended for
technical observability
are often inadequate
to infer deep customer
understanding.

(Log aggregation for business
analytics)

Snapshot testing is
undeniably useful when
working with legacy
systems. But it shouldn’t
be the primary test
mechanism for such
systems.

(Snapshot testing only)

https://cloud.google.com/migrate/anthos/docs/anthos-migrate-benefits
https://cloud.google.com/migrate/anthos/docs/anthos-migrate-benefits
https://thoughtworks.com/radar/techniques/zero-trust-architecture-zta
https://www.standishgroup.com/sample_research_files/Exceeding%20Value_Layout.pdf
https://www.standishgroup.com/sample_research_files/Exceeding%20Value_Layout.pdf
https://thoughtworks.com/radar/tools/splunk
https://thoughtworks.com/radar/techniques/gitflow
https://nvie.com/posts/a-successful-git-branching-model/
https://testing-library.com/docs/guiding-principles

Platforms
TECHNOLOGY RADAR Vol. 22

© ThoughtWorks, Inc. All Rights Reserved.

15 | TECHNOLOGY RADAR

.NET Core
Adopt

We previously had .NET Core in Adopt,
indicating that it had become our default
for .NET projects. But we felt it’s worth again
calling attention to .NET Core. With the
release of .NET Core 3.x last year, the bulk
of the features from .NET Framework have
now been ported into .NET Core. With the
announcement that .NET Framework is on
its last release, Microsoft have reinforced
the view that .NET Core is the future of
.NET. Microsoft has done a lot of work to
make .NET Core container friendly. Most of
our .NET Core–based projects target Linux
and are often deployed as containers. The
upcoming .NET 5 release looks promising,
and we’re looking forward to it.

Istio
Adopt

If you’re building and operating a
scaled microservices architecture and
have embraced Kubernetes, adopting
service mesh to manage all cross-cutting
aspects of running the architecture
is a default position. Among various
implementations of service mesh, Istio
has gained majority adoption. It has
a rich feature set, including service
discovery, traffic management, service-
to-service and origin-to-service security,
observability (including telemetry and
distributed tracing), rolling releases and

resiliency. Its user experience has been
improved in its latest releases, because
of its ease of installation and control
panel architecture. Istio has lowered
the bar for implementing large-scale
microservices with operational quality for
many of our clients, while admitting that
operating your own Istio and Kubernetes
instances requires adequate knowledge
and internal resources which is not for the
fainthearted.

Platforms Adopt
28. .NET Core
29. Istio

Trial
30. Anka
31. Argo CD
32. Crowdin
33. eBPF
34. Firebase
35. Hot Chocolate
36. Hydra
37. OpenTelemetry
38. Snowflake

Assess
39. Anthos
40. Apache Pulsar
41. Cosmos
42. Google BigQuery ML
43. JupyterLab
44. Marquez
45. Matomo
46. MeiliSearch
47. Stratos
48. Trillian

Hold
49. Node overload

Anka
Trial

Anka is a set of tools to create, manage,
distribute, build and test macOS
reproducible virtual environments for iOS
and macOS. It brings Docker-like experience
to macOS environments: instant start, CLI
to manage virtual machines and registry
to version and tag virtual machines for
distribution. We’ve used Anka to build a

84

Hold HoldAssess AssessTrial TrialAdopt Adopt

3 4

27

17

23

24

26

12

5

16

10

19

20

25

21

22

27

18

15

6

88

81

82

90

91

92
93

94

95

96

97

31

39

40

41

42

43

44

49 45

46 47 48

33
34

29

30

32

35

36
38

77

80

83

86

85

89

78

79

87

98

1

8

9

11

14
13

52

67 68

69
70

71

72

73

74

75

76

53 55

57
58

59

60

63

65

66

28

37

50
51

56

61
62

64

54

https://devblogs.microsoft.com/dotnet/introducing-net-5
https://devblogs.microsoft.com/dotnet/introducing-net-5
https://devblogs.microsoft.com/dotnet/net-core-is-the-future-of-net/
https://devblogs.microsoft.com/dotnet/net-core-is-the-future-of-net/
https://devblogs.microsoft.com/dotnet/using-net-and-docker-together-dockercon-2019-update/
https://devblogs.microsoft.com/dotnet/introducing-net-5/
https://martinfowler.com/articles/microservices.html
https://thoughtworks.com/radar/platforms/kubernetes
https://thoughtworks.com/radar/techniques/service-mesh
https://istio.io/
https://ankadoc.bitbucket.io/

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 16

macOS private cloud for a client. This tool is
worth considering when virtualizing iOS and
macOS environments.

Argo CD
Trial

Without making a judgment of the GitOps
technique, we’d like to talk about Argo
CD within the scope of deploying and
monitoring applications in Kubernetes
environments. Based on its ability to
automate the deployment of the desired
application state in the specified target
environments in Kubernetes and our good
experience with troubleshooting failed
deployments, verifying logs and monitoring
deployment status, we recommend you give
Argo CD a try. You can even see graphically
what is going on in the cluster, how a
change is propagated and how pods are
created and destroyed in real time.

Crowdin
Trial

Most of the projects with multilingual
support start with development teams
building features in one language and
managing the rest through offline
translation via emails and spreadsheets.
Although this simple setup works, things
can quickly get out of hand. You may have
to keep answering the same questions
for different language translators, sucking
the energy out of the collaboration
between translators, proofreaders and
the development team. Crowdin is one
of a handful of platforms that help in
streamlining the localization workflow of
your project. With Crowdin the development
team can continue building features, while

the platform streamlines the text that
needs translation into an online workflow.
We like that Crowdin nudges the teams to
continuously and incrementally incorporate
translations rather than managing them in
large batches toward the end.

eBPF
Trial

For several years now, the Linux kernel
has included the extended Berkeley
Packet Filter (eBPF) virtual machine and
provided the ability to attach eBPF filters
to particular sockets. But extended BPF
goes far beyond packet filtering and allows
custom scripts to be triggered at various
points within the kernel with very little
overhead. Although this technology isn’t
new, it’s now coming into its own with the
increasing use of microservices deployed as
orchestrated containers. Service-to-service
communications can be complex in these
systems, making it difficult to correlate
latency or performance issues back to an
API call. We’re now seeing tools released
with prewritten eBPF scripts for collecting
and visualizing packet traffic or reporting on
CPU utilization. With the rise of Kubernetes,
we’re seeing a new generation of security
enforcement and instrumentation based on
eBPF scripts that help tame the complexity
of a large microservices deployment.

Firebase
Trial

Google’s Firebase has undergone significant
evolution since we mentioned it as part
of a serverless architecture in 2016.
Firebase is a comprehensive platform for
building mobile and web apps in a way

that’s supported by Google’s underlying
scalable infrastructure. We particularly like
Firebase App Distribution, which makes
it easy to publish test versions of an app
via a CD pipeline, and Firebase Remote
Config, which allows configuration changes
to be dynamically pushed to apps without
needing to republish them.

Hot Chocolate
Trial

The GraphQL ecosystem and community
keep growing. Hot Chocolate is a GraphQL
server for .NET (Core and Classic). It lets
you build and host schemas and then serve
queries against them using the same base
components of GraphQL — data loader,
resolver, schema, operations and types. The
team behind Hot Chocolate has recently
added schema stitching, which allows
for a single entry point to query across
multiple schemas aggregated from different
locations. Despite the potential to misuse
this approach, our teams are happy with
Hot Chocolate — it’s well documented, and
we’re able to deliver value quickly to our
clients.

Hydra
Trial

Not everyone needs a self-hosted OAuth2
solution, but if you do, have a look at
Hydra — a fully compliant open source
OAuth2 server and OpenID connect
provider. Hydra has in-memory storage
support for development and a relational
database (PostgreSQL) for production
use cases. Hydra as such is stateless and
easy to scale horizontally in platforms
such as Kubernetes. Depending on your

Platforms

Although this technology
is not new, it is now
coming into its own with
the increasing use of
microservices deployed as
orchestrated containers.

(eBPF)

The clear separation of
identity from the rest of
the OAuth2 framework
makes it easier to
integrate Hydra with an
existing authentication
ecosystem.

(Hydra)

https://argoproj.github.io/argo-cd/
https://argoproj.github.io/argo-cd/
https://thoughtworks.com/radar/platforms/kubernetes
https://crowdin.com/
https://thoughtworks.com/radar/platforms/kubernetes
https://firebase.google.com/
https://thoughtworks.com/radar/techniques/serverless-architecture
https://thoughtworks.com/radar/languages-and-frameworks/graphql
https://hotchocolate.io/
https://www.ory.sh/hydra/
https://thoughtworks.com/radar/platforms/kubernetes

© ThoughtWorks, Inc. All Rights Reserved.

17 | TECHNOLOGY RADAR

performance requirement, you may have
to tune the number of database instances
while scaling Hydra instances. And
because Hydra doesn’t provide any identity
management solutions out of the box, you
can integrate whatever flavor of identity
management you have with Hydra through
a clean API. This clear separation of identity
from the rest of the OAuth2 framework
makes it easier to integrate Hydra with an
existing authentication ecosystem.

OpenTelemetry
Trial

OpenTelemetry is an open source
observability project that merges
OpenTracing and OpenCensus. The
OpenTelemetry project includes
specification, libraries, agents, and other
components needed to capture telemetry
from services to better observe, manage
and debug them. It covers the three pillars
of observability — distributed tracing,
metrics and logging (currently in beta) —
and its specification connects these three
pieces through correlations; thus you
can use metrics to pinpoint a problem,
locate the corresponding traces to
discover where the problem occured, and
ultimately study the corresponding logs to
find the exact root cause. OpenTelemetry
components can be connected to back-end
observability systems such as Prometheus
and Jaeger among others. Formation of
OpenTracing is a positive step toward the
convergence of standardization and the
simplification of tooling.

Snowflake
Trial

Snowflake has proven to be a robust
SaaS big data storage, warehouse or lake

solution for many of our clients. It has
a superior architecture to scale storage,
compute, and services to load, unload and
use data. It’s also very flexible: it supports
storage of structured, semi-structured and
unstructured data; provides a growing list
of connectors for different access patterns
such as Spark for data science and SQL
for analytics; and runs on multiple cloud
providers. Our advice to many of our
clients is to use managed services for their
utility technology such as big data storage;
however, if the risk and regulations
prohibit the use of managed services,
then Snowflake is a good candidate for
companies with large volumes of data and
heavy processing workloads. Although
we’ve been successful using Snowflake in
our medium-sized engagements, we’ve
yet to experience Snowflake in large
ecosystems where data need to be owned
across segments of the organization.

Anthos
Assess

We see a shift from accidental hybrid or
whole-of-estate cloud migration plans
to intentional and sophisticated hybrid,
poly or portable cloud strategies, where
organizations apply multidimensional
principles to establish and execute their
cloud strategy: where to host their various
data and functional assets based on
risk, ability to control and performance
profiles; how to utilize their on-premise
infrastructure investments while reducing
the cost of operations; and how to take
advantage of multiple cloud providers and
their unique differentiated services without
creating complexity and friction for users
building and operating applications.

Anthos is Google’s answer to enable
hybrid and multicloud strategies by

providing a high-level management and
control plane on top of a set of open
source technologies such as GKE, Service
Mesh and a Git-based Configuration
Management. It enables running
portable workloads and other assets
on different hosting environments,
including Google Cloud and on-premises
hardware. Although other cloud providers
have comparative offerings, Anthos
intends to go beyond a hybrid cloud to
a portable cloud enabler using open
source components, but that is yet to
be seen. We’re seeing a rising interest
in Anthos. While Google’s approach in
managed hybrid cloud environments
seems promising, it’s not a magic bullet
and requires changes in both existing
cloud and on-premise assets. Our advice
for clients considering Anthos is to make
measured tradeoffs between selecting
services from the Google Cloud ecosystem
and other options, to maintain their right
level of neutrality and control.

Apache Pulsar
Assess

Apache Pulsar is an open source pub-
sub messaging/streaming platform,
competing in a similar space with Apache
Kafka. It provides expected functionality
— such as low-latency async and sync
message delivery and scalable persistent
storage of messages — as well as various
client libraries. What has excited us to
evaluate Pulsar is its ease of scalability,
particularly in large organizations with
multiple segments of users. Pulsar natively
supports multitenancy, georeplication,
role-based access control and segregation
of billing. We’re also looking to Pulsar to
solve the problem of a never-ending log of
messages for our large-scale data systems
where events are expected to persist

Platforms

The OpenTelemetry
project includes
specification, libraries,
agents and other
components needed to
capture telemetry from
services to better observe,
manage and debug them.

(OpenTelemetry)

Anthos is Google’s answer
to enable hybrid and
multicloud strategies.
It enables you to run
portable workloads
on different hosting
environments including
Google Cloud and on-
premise hardware.

(Anthos)

https://opentelemetry.io/
https://opentracing.io/
https://github.com/census-instrumentation
https://github.com/open-telemetry/opentelemetry-specification
https://github.com/open-telemetry/opentelemetry-specification/blob/master/specification/correlationcontext/api.md
https://thoughtworks.com/radar/tools/prometheus
https://thoughtworks.com/radar/tools/jaeger
https://opentelemetry.io/registry/?s=exporter
https://www.snowflake.com/
https://docs.snowflake.com/en/user-guide/conns-drivers.html
https://cloud.google.com/anthos
https://cloud.google.com/anthos/gke
https://cloud.google.com/anthos/service-mesh
https://cloud.google.com/anthos/service-mesh
https://cloud.google.com/anthos/config-management
https://cloud.google.com/anthos/config-management
https://pulsar.apache.org/en/
https://thoughtworks.com/radar/tools/apache-kafka
https://thoughtworks.com/radar/tools/apache-kafka

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 18

indefinitely and subscribers are able to
start consuming messages retrospectively.
This is supported through a tiered storage
model. Although Pulsar is a promising
platform for large organizations, there
is room for improvement. Its current
installation requires administering
ZooKeeper and BookKeeper among other
pieces of technology. We hope that with its
growing adoption, users can soon count on
wider community support.

Cosmos
Assess

The performance of blockchain technology
has been greatly improved since we initially
assessed this area in the Radar. However,
there’s still no single blockchain that could
achieve “internet-level” throughput. As
various blockchain platforms develop, we’re
seeing new data and value silos. That’s
why cross-chain tech has always been a
key topic in the blockchain community:
the future of blockchain may be a network
of independent parallel blockchains. This
is also the vision of Cosmos. Cosmos
releases Tendermint and CosmosSDK to
let developers customize independent
blockchains. These parallel blockchains
could exchange value through the Inter-
Blockchain Communication (IBC) protocol
and Peg-Zones. Our teams have had great
experiences with CosmosSDK, and the
IBC protocol is maturing. This architecture
could solve blockchain interoperability and
scalability issues.

Google BigQuery ML
Assess

Often training and predicting outcomes
from machine learning models require
code to take the data to the model. Google

BigQuery ML inverts this by bringing the
model to the data. Google BigQuery is a
data warehouse designed to serve large-
scale queries using SQL, for analytical use
cases. Google BigQuery ML extends this
function and its SQL interface to create,
train and evaluate machine learning
models using its data sets; and eventually
run model predictions to create new
BigQuery data sets. It supports a limited
set of models out of the box, such as linear
regression for forecasting or binary and
multiclass regression for classification. It
also supports, with limited functionality,
importing previously trained TensorFlow
models. Although BigQuery ML and its SQL-
based approach lower the bar for using
machine learning to make predictions and
recommendations, particularly for quick
explorations, this comes with a difficult
trade-off: compromising on other aspects of
model training such as ethical bias testing,
explainability and continuous delivery for
machine learning.

JupyterLab
Assess

JupyterLab is the next-generation web-
based user interface for Project Jupyter.
If you’ve been using Jupyter Notebooks,
JupyterLab is worth a try; it gives you
an interactive environment for Jupyter
notebooks, code and data. We see it as an
evolution of Jupyter Notebook: it provides a
better experience by extending its original
capabilities of allowing code, visualization
and documentation to exist in one place.

Marquez
Assess

Marquez is a relatively young open source
project for collecting and serving metadata

information about a data ecosystem. It
represents a simple data model to capture
metadata such as lineage, upstream and
downstream data processing jobs and their
status, and a flexible set of tags to capture
the attributes of data sets. It provides a
simple RESTful API to manage the metadata
which eases the integration of Marquez to
other tool sets within the data ecosystem.

We’ve used Marquez as a starting point
and easily extended it to fit our needs such
as enforcing security policies as well as
changes to its domain language. If you’re
looking for a small and simple tool to
bootstrap storage and visualization of your
data-processing jobs and data sets, Marquez
is a good place to start.

Matomo
Assess

Matomo (formerly Piwik) is an open source
web analytics platform that provides you
with full control over your data. You can self-
host Matomo and secure your web analytics
data from third parties. Matomo also makes
it easy to integrate web analytics data with
your in-house data platform and lets you
build usage models that are tailored to your
needs.

MeiliSearch
Assess

MeiliSearch is a fast, easy-to-use and easy-
to-deploy text search engine. Over the
years Elasticsearch has become the popular
choice for scalable text searches. However,
if you don’t have the volume of data that
warrants a distributed solution but still
want to provide a fast typo-tolerant search
engine, then we recommend assessing
MeiliSearch.

Platforms

BigQuery ML lowers
the bar for using ML
to make predictions
and recommendations,
particularly for quick
explorations.

(Google BigQuery ML)

https://pulsar.apache.org/docs/en/concepts-tiered-storage/
https://pulsar.apache.org/docs/en/administration-zk-bk/
https://thoughtworks.com/radar/techniques/blockchain-beyond-bitcoin
https://thoughtworks.com/radar/techniques/blockchain-beyond-bitcoin
https://cosmos.network/
https://thoughtworks.com/radar/platforms/tendermint
https://cloud.google.com/bigquery-ml/docs
https://cloud.google.com/bigquery-ml/docs
https://cloud.google.com/bigquery
https://thoughtworks.com/radar/languages-and-frameworks/tensorflow
https://thoughtworks.com/radar/techniques/ethical-bias-testing
https://thoughtworks.com/radar/techniques/explainability-as-a-first-class-model-selection-criterion
https://thoughtworks.com/radar/techniques/continuous-delivery-for-machine-learning-cd4ml
https://thoughtworks.com/radar/techniques/continuous-delivery-for-machine-learning-cd4ml
https://jupyterlab.readthedocs.io/en/stable/getting_started/overview.html
https://thoughtworks.com/radar/tools/jupyter
https://marquezproject.github.io/marquez/
https://marquezproject.github.io/marquez/openapi.html#
https://matomo.org/
https://github.com/meilisearch/MeiliSearch

© ThoughtWorks, Inc. All Rights Reserved.

19 | TECHNOLOGY RADAR

Stratos
Assess

Ultraleap (previously Leap Motion) has
been a leader in the XR space for some
time, creating remarkable hand-tracking
hardware that allows a user’s hands to
make the leap into virtual reality. Stratos is
Ultraleap’s underlying haptics, sensors and
software platform, and it can use targeted
ultrasound to create haptic feedback in mid-
air. A use case is responding to a driver’s
hand gesture to change the air conditioning
in the car and providing haptic feedback
as part of the interface. We’re excited to
see this technology and what creative
technologists might do to incorporate it into
their use cases.

Trillian
Assess

Trillian is a cryptographically verifiable,
centralized data store. For trustless,
decentralized environments, you can use

blockchain-based distributed ledgers. For
enterprise environments, however, where
the cost of CPU-heavy consensus protocols
is unwarranted, we recommend you give
Trillian a try.

Node overload
Hold

Technologies, especially wildly popular ones,
have a tendency to be overused. What we’re
seeing at the moment is Node overload, a
tendency to use Node.js indiscriminately
or for the wrong reasons. Among these,
two stand out in our opinion. Firstly, we
frequently hear that Node should be used
so that all programming can be done in
one programming language. Our view
remains that polyglot programming is a
better approach, and this still goes both
ways. Secondly, we often hear teams cite
performance as a reason to choose Node.js.
Although there are myriads of more or less
sensible benchmarks, this perception is
rooted in history. When Node.js became

popular, it was the first major framework to
embrace a nonblocking programming model
which made it very efficient for IO-heavy
tasks. (We mentioned this in our write-up of
Node.js in 2012.) Due to its single-threaded
nature, Node.js was never a good choice
for compute-heavy workloads, though, and
now that capable nonblocking frameworks
also exist on other platforms — some with
elegant, modern APIs — performance is no
longer a reason to choose Node.js.

Platforms

MeiliSearch is a fast, easy-
to-use and easy-to-deploy
text search engine. It’s
ideal if you don’t have
the volume of data that
warrants a distributed
solution but still want
to provide a fast typo-
tolerant search engine.

(MeiliSearch)

Stratos is the underlying
haptics, sensors and
software platform that
powers XR pioneer
Ultraleap (previously Leap
Motion).

(Stratos)

https://www.ultraleap.com/haptics/
https://github.com/google/trillian
https://thoughtworks.com/radar/techniques/polyglot-programming
https://thoughtworks.com/radar/languages-and-frameworks/javascript-as-a-first-class-language
https://thoughtworks.com/radar/languages-and-frameworks/javascript-as-a-first-class-language

Tools
TECHNOLOGY RADAR Vol. 22

© ThoughtWorks, Inc. All Rights Reserved.

21 | TECHNOLOGY RADAR

Tools Adopt
50. Cypress
51. Figma

Trial
52. Dojo
53. DVC
54. Experiment tracking tools

for machine learning
55. Goss
56. Jaeger
57. k9s
58. kind
59. mkcert
60. MURAL
61. Open Policy Agent (OPA)
62. Optimal Workshop
63. Phrase
64. ScoutSuite
65. Visual regression testing

tools
66. Visual Studio Live Share

Assess
67. Apache Superset
68. AsyncAPI
69. ConfigCat
70. Gitpod
71. Gloo
72. Lens
73. Manifold
74. Sizzy
75. Snowpack
76. tfsec

Hold

Cypress
Adopt

Cypress is still a favorite among our teams
where developers manage end-to-end
tests themselves, as part of a healthy test
pyramid, of course. We decided to call it out
again in this Radar because recent versions
of Cypress have added support for Firefox,
and we strongly suggest testing on multiple
browsers. The dominance of Chrome and
Chromium-based browsers has led to a
worrying trend of teams seemingly only
testing with Chrome which can lead to nasty
surprises.

Figma
Adopt

Figma has demonstrated to be the go-to
tool for collaborative design, not only for
designers but for multidisciplinary teams
too; it allows developers and other roles
to view and comment on designs through
the browser without the desktop version.
Compared to its competitors (e.g., Invision
or Sketch) which have you use more than
one tool for versioning, collaborating and
design sharing, Figma puts together all of
these features in one tool that makes it
easier for our teams to discover new ideas
together. Our teams find Figma very useful,
especially in remote and distributed design
work enablement and facilitation. In addition
to its real-time design and collaboration
capabilities, Figma also offers an API that
helps to improve the DesignOps process.

Dojo
Trial

A few years ago, Docker — and containers in
general — radically changed how we think
about packaging, deploying and running our
applications. But despite this improvement
in production, developers still spend a lot of
time setting up development environments
and regularly run into “but it works on my
machine” style problems. Dojo aims to fix
this by creating standard development
environments, versioned and released as

Docker images. Several of our teams use
Dojo to streamline developing, testing
and building code from local development
through production pipelines.

DVC
Trial

In 2018 we mentioned DVC in conjunction
with the versioning data for reproducible
analytics. Since then it has become a
favorite tool for managing experiments in

84

Hold HoldAssess AssessTrial TrialAdopt Adopt

3 4

27

17

23

24

26

12

5

16

10

19

20

25

21

22

27

18

15

6

88

81

82

90

91

92
93

94

95

96

97

31

39

40

41

42

43

44

49 45

46 47 48

33
34

29

30

32

35

36
38

77

80

83

86

85

89

78

79

87

98

1

8

9

11

14
13

52

67 68

69
70

71

72

73

74

75

76

53 55

57
58

59

60

63

65

66

28

37

50
51

56

61
62

64

54

http://www.cypress.io/
https://martinfowler.com/articles/practical-test-pyramid.html#End-to-endTests
https://martinfowler.com/articles/practical-test-pyramid.html#End-to-endTests
https://cypress.io/blog/2020/02/06/introducing-firefox-and-edge-support-in-cypress-4-0/
https://twitter.com/mike_conley/status/1245797292453609478
https://twitter.com/mike_conley/status/1245797292453609478
https://www.figma.com/
https://thoughtworks.com/radar/techniques/designops
https://github.com/kudulab/dojo
https://dvc.org/
https://thoughtworks.com/radar/techniques/versioning-data-for-reproducible-analytics
https://thoughtworks.com/radar/techniques/versioning-data-for-reproducible-analytics

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 22

features, you may want to consider it when
its features meet your needs, especially
since it comes as a small, self-contained
binary (rather than requiring a Ruby
environment). A common anti-pattern with
using tools such as Goss is double-entry
bookkeeping, where each change in the
actual infrastructure as code files requires a
corresponding change in the test assertions.
Such tests are maintenance heavy and
because of the close correspondence
between code and test, failures mostly occur
when an engineer updates one side and
forgets the other. And these tests rarely
catch genuine problems.

Jaeger
Trial

Jaeger is an open source distributed
tracing system. Similar to Zipkin, it’s been
inspired by the Google Dapper paper and
complies with OpenTelemetry. We’ve used
Jaeger successfully with Istio and Envoy on
Kubernetes and like its UI. Jaeger exposes
tracing metrics in the Prometheus format
so they can be made available to other
tools. However, a new generation of tools
such as Honeycomb integrates traces and
metrics into a single observability stream
for simpler aggregate analysis. Jaeger
joined CNCF in 2017 and has recently been
elevated to CNCF’s highest level of maturity,
indicating its widespread deployment into
production systems.

k9s
Trial

We continue to be ardent supporters of
infrastructure as code, and we continue to
believe that a robust monitoring solution
is a prerequisite for operating distributed
applications. Sometimes an interactive

tool such as the AWS web console can be
a useful addition. It allows us to explore
all kinds of resources in an ad-hoc fashion
without having to remember every single
obscure command. Using an interactive
tool to make manual modifications on
the fly is still a questionable practice,
though. For Kubernetes we now have k9s,
which provides an interactive interface for
basically everything that kubectl can do.
And to boot, it’s not a web application but
runs inside a terminal window, evoking
fond memories of Midnight Commander
for some of us.

kind
Trial

kind is a tool for running local Kubernetes
clusters using Docker container nodes.
With kubetest integration, kind makes
it easy to do end-to-end testing on
Kubernetes. We’ve used kind to create
ephemeral Kubernetes clusters to test
Kubernetes resources such as Operators
and Custom Resource Definitions (CRDs) in
our CI pipelines.

mkcert
Trial

mkcert is a convenient tool for creating
locally trusted development certificates.
Using certificates from real certificate
authorities (CAs) for local development can
be challenging if not impossible (for hosts
such as example.test, localhost or 127.0.0.1).
In such situations self-signed certificates may
be your only option. mkcert lets you generate
self-signed certificates and installs the local
CA in the system root store. For anything
other than local development and testing, we
strongly recommend using certificates from
real CAs to avoid trust issues.

machine learning (ML) projects. Since it’s
based on Git, DVC is a familiar environment
for software developers to bring their
engineering practices to ML practice.
Because it versions the code that processes
data along with the data itself and tracks
stages in a pipeline, it helps bring order to
the modeling activities without interrupting
the analysts’ flow.

Experiment tracking tools for
machine learning
Trial

The day-to-day work of machine
learning often boils down to a series
of experiments in selecting a modeling
approach and the network topology,
training data and optimizing or tweaking
the model. Data scientists must use
experience and intuition to hypothesize
changes and then measure the impact
those changes have on the overall
performance of the model. As this practice
has matured, our teams have found an
increasing need for experiment tracking
tools for machine learning. These tools
help investigators keep track of the
experiments and work through them
methodically. Although no clear winner
has emerged, tools such as MLflow and
platforms such as Comet or Neptune have
introduced rigor and repeatability into the
entire machine learning workflow.

Goss
Trial

We mentioned Goss, a tool for provisioning
testing, in passing in previous Radars, for
example, when describing the technique
of TDD’ing containers. Although Goss isn’t
always an alternative to Serverspec, simply
because it doesn’t offer the same amount of

Tools

Jaeger is an open source
distributed tracing system.
We’ve used it successfully
with Istio and Envoy on
Kubernetes, and like its UI.

(Jaeger)

k9s provides an
interactive interface
for basically everything
that kubectl can do. And
to boot, it’s not a web
application but runs
inside a terminal window.

(k9s)

https://github.com/jaegertracing/jaeger
https://thoughtworks.com/radar/tools/zipkin
https://ai.google/research/pubs/pub36356
https://thoughtworks.com/radar/platforms/opentelemetry
https://thoughtworks.com/radar/platforms/istio
https://www.envoyproxy.io/
https://github.com/jaegertracing/jaeger-ui
https://thoughtworks.com/radar/tools/prometheus
https://thoughtworks.com/radar/tools/honeycomb
https://www.cncf.io/blog/2017/09/13/cncf-hosts-jaeger/
https://thoughtworks.com/radar/techniques/infrastructure-as-code
https://thoughtworks.com/radar/platforms/kubernetes
https://k9scli.io/
https://en.wikipedia.org/wiki/Midnight_Commander
https://github.com/kubernetes-sigs/kind
https://thoughtworks.com/radar/platforms/kubernetes
https://github.com/kubernetes/test-infra/tree/master/kubetest
https://github.com/FiloSottile/mkcert
https://mlflow.org/
https://comet.ml/
https://neptune.ml/
https://github.com/aelsabbahy/goss
https://thoughtworks.com/radar/techniques/provisioning-testing
https://thoughtworks.com/radar/techniques/provisioning-testing
https://thoughtworks.com/radar/techniques/tdd-ing-containers
https://thoughtworks.com/radar/tools/serverspec

© ThoughtWorks, Inc. All Rights Reserved.

23 | TECHNOLOGY RADAR

MURAL
Trial

MURAL describes itself as a “digital
workspace for visual collaboration” and
allows teams to interact with a shared
workspace based on a whiteboard/sticky
notes metaphor. Its features include
voting, commenting, notes and “follow the
presenter.” We particularly like the template
feature that allows a facilitator to design
and then reuse guided sessions with a team.
Each of the major collaboration suites have
a tool in this space (for example, Google
Jamboard and Microsoft Whiteboard) and
these are worth investigating, but we’ve
found MURAL to be slick, effective and
flexible.

Open Policy Agent (OPA)
Trial

Open Policy Agent (OPA) has rapidly
become a favorable component of many
distributed cloud-native solutions that we
build for our clients. OPA provides a uniform
framework and language for declaring,
enforcing and controlling policies for various
components of a cloud-native solution. It’s
a great example of a tool that implements
security policy as code. We’ve had a smooth
experience using OPA in multiple scenarios,
including deploying resources to K8s
clusters, enforcing access control across
services in a service mesh and fine-grained
security controls as code for accessing
application resources. A recent commercial
offering, Styra’s Declarative Authorization
Service (DAS), eases the adoption of OPA
for enterprises by adding a management
tool, or control plane, to OPA for K8s with
a prebuilt policy library, impact analysis of
the policies and logging capabilities. We look
forward to maturity and extension of OPA
beyond operational services to (big) data-
centric solutions.

Optimal Workshop
Trial

UX research demands data collection and
analysis to make better decisions about
the products we need to build. Our teams
find Optimal Workshop useful because it
makes it easy to validate prototypes and
configure tests for data collection and
thus make better decisions. Features such
as first-click, card sorting, or a heatmap
of user interaction help to both validate
prototypes and improve website navigation
and information display. It’s an ideal tool
for distributed teams since it allows them to
conduct remote research.

Phrase
Trial

As mentioned in our description of Crowdin,
you now have a choice of platforms to
manage the translation of a product into
multiple languages instead of emailing large
spreadsheets. Our teams report positive
experiences with Phrase, emphasizing
that it’s easy to use for all key user groups.
Translators use a convenient browser-
based UI. Managers can add new fields and
synchronize translations with other teams
in the same UI. Developers can access
Phrase locally and from a build pipeline. A
feature that deserves a specific mention is
the ability to apply versioning to translations
through tags, which makes it possible to
compare the look of different translations
inside the actual product.

ScoutSuite
Trial

ScoutSuite is an expanded and updated
tool based on Scout2 (featured in the
Radar in 2018) that provides security
posture assessment across AWS, Azure,

GCP and other cloud providers. It works
by automatically aggregating configuration
data for an environment and applying rules
to audit the environment. We’ve found this
very useful across projects for doing point-
in-time security assessments.

Visual regression testing tools
Trial

Since we first mentioned visual regression
testing tools in 2014, the use of the
technique has spread and the tools
landscape has evolved. BackstopJS remains
an excellent choice with new features being
added regularly, including support for
running inside Docker containers. Loki was
featured in our previous Radar. Applitools,
CrossBrowserTesting and Percy are SaaS
solutions. Another notable mention is
Resemble.js, an image diffing library.
Although most teams use it indirectly as
part of BackstopJS, some of our teams
have been using it to analyze and compare
images of web pages directly. In general,
our experience shows that visual regression
tools are less useful in the early stages
when the interface goes through significant
changes, but they certainly prove their
worth as the product matures and the
interface stabilizes.

Visual Studio Live Share
Trial

Visual Studio Live Share is a suite of
extensions for Visual Studio Code and Visual
Studio. At a time when teams are searching
for good remote collaboration options,
we want to call attention to the excellent
tooling here. Live Share provides a good,
low-latency remote-pairing experience, and
requires significantly less bandwidth than
the brute-force approach of sharing your
entire desktop. Importantly, developers can

Tools

OPA provides a uniform
framework and language
for declaring, enforcing
and controlling policies
for various components of
a cloud-native solution.

(Open Policy Agent (OPA))

Our teams find Optimal
Workshop useful because
it makes it easy to validate
prototypes and configure
tests for data collection
and thus make better
decisions.

(Optimal Workshop)

https://www.mural.co/
https://jamboard.google.com/
https://jamboard.google.com/
https://www.microsoft.com/en-ca/microsoft-365/microsoft-whiteboard/digital-whiteboard-app
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/docs/latest/#rego
https://thoughtworks.com/radar/techniques/security-policy-as-code
https://thoughtworks.com/radar/techniques/service-mesh
https://www.styra.com/
https://www.styra.com/
https://www.optimalworkshop.com/
https://thoughtworks.com/radar/platforms/crowdin
https://phrase.com/
https://github.com/nccgroup/ScoutSuite
https://thoughtworks.com/radar/platforms/aws
https://thoughtworks.com/radar/platforms/azure
https://thoughtworks.com/radar/platforms/google-cloud-platform
https://thoughtworks.com/radar/tools/backstopjs
https://thoughtworks.com/radar/tools/loki
https://applitools.com/
https://crossbrowsertesting.com/
https://percy.io/
https://github.com/rsmbl
https://marketplace.visualstudio.com/items?itemName=MS-vsliveshare.vsliveshare-pack
https://thoughtworks.com/radar/tools/visual-studio-code

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 24

work with their preferred configuration,
extensions and key mappings during a
pairing session. In addition to real-time
collaboration for editing and debugging
code, Live Share allows voice calls and
sharing terminals and servers.

Apache Superset
Assess

Apache Superset is a great business
intelligence (BI) tool for data exploration
and visualization to work with large data
lake and data warehouse setups. It works,
for example, with Presto, Amazon Athena
and Amazon Redshift and can be nicely
integrated with enterprise authentication.
Moreover, you don’t have to be a data
engineer to use it; it’s meant to benefit
all engineers exploring data in their
everyday work. It’s worth pointing out that
Apache Superset is currently undergoing
incubation at the Apache Software
Foundation (ASF), meaning it’s not yet fully
endorsed by ASF.

AsyncAPI
Assess

Open standards are one of the foundational
pillars of building distributed systems. For
example, the OpenAPI (formerly Swagger)
specification, as an industry standard to
define RESTful APIs, has been instrumental
to the success of distributed architectures
such as microservices. It has enabled a
proliferation of tooling to support building,
testing and monitoring RESTful APIs.
However, such standardizations have been
largely missing in distributed systems for
event-driven APIs.

AsyncAPI is an open source initiative
to create a much needed event-driven
and asynchronous API standardization
and development tooling. The AsyncAPI

specification, inspired by the OpenAPI
specification, describes and documents
event-driven APIs in a machine-readable
format. It’s protocol agnostic, so it can
be used for APIs that work over many
protocols, including MQTT, WebSockets,
and Kafka. We’re eager to see the ongoing
improvements of AsyncAPI and further
maturity of its tooling ecosystem.

ConfigCat
Assess

If you’re looking for a service to support
dynamic feature toggles (and bear in mind
that simple feature toggles work well too),
check out ConfigCat. We’d describe it as “like
LaunchDarkly but cheaper and a bit less
fancy” and find that it does most of what
we need. ConfigCat supports simple feature
toggles, user segmentation, and A/B testing
and has a generous free tier for low-volume
use cases or those just starting out.

Gitpod
Assess

You can build most software following
a simple two-step process: check out a
repository, and then run a single build
script. The process of setting up a full coding
environment can still be cumbersome,
though. Gitpod addresses this by providing
cloud-based, “ready-to-code” environments
for Github or GitLab repositories. It offers
an IDE based on Visual Studio Code that
runs inside the web browser. By default,
these environments are launched on the
Google Cloud Platform, although you can
also deploy on-premise solutions. We see
the immediate appeal, especially for open
source software where this approach can
lower the bar for casual contributors.
However, it remains to be seen how
viable this approach will be in corporate
environments.

Gloo
Assess

With the increasing adoption of Kubernetes
and service mesh, API gateways have been
experiencing an existential crisis in cloud-
native distributed systems. After all, many
of their capabilities (such as traffic control,
security, routing and observability) are now
provided by the cluster’s ingress controller
and mesh gateway. Gloo is a lightweight
API gateway that embraces this change;
it uses Envoy as its gateway technology,
while providing added value such as a
cohesive view of the APIs to the external
users and applications. It also provides
an administrative interface for controlling
Envoy gateways and runs and integrates
with multiple service mesh implementations
such as Linkerd, Istio and AWS App Mesh.
While its open source implementation
provides the basic capabilities expected
from an API gateway, its enterprise edition
has a more mature set of security controls
such as API key management or integration
with OPA. Gloo is a promising lightweight
API gateway that plays well with the
ecosystem of cloud-native technology and
architecture, while avoiding the API gateway
trap of enabling business logic to glue APIs
for the end user.

Lens
Assess

One of the strengths of Kubernetes is
its flexibility and range of configuration
possibilities along with the API-driven,
programmable configuration mechanisms
and command-line visibility and control
using manifest files. However, that strength
can also be a weakness: when deployments
are complex or when managing multiple
clusters, it can be difficult to get a clear
picture of the overall status through
command-line arguments and manifests
alone. Lens attempts to solve this problem

Tools

AsyncAPI is an open
source initiative to create
a much needed event-
driven and asynchronous
API standardization and
development tooling.

(AsyncAPI)

ConfigCat supports
simple feature toggles,
user segmentation, and
A/B testing and has a
generous free tier for low-
volume use cases or those
just starting out.

(ConfigCat)

https://superset.apache.org/
https://thoughtworks.com/radar/platforms/presto
https://aws.amazon.com/athena/
https://aws.amazon.com/redshift/
https://github.com/OAI
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/201701-event-driven.html
https://www.asyncapi.com/
https://www.asyncapi.com/docs/specifications/2.0.0/
https://www.asyncapi.com/docs/specifications/2.0.0/
https://configcat.com/
https://www.gitpod.io/
https://thoughtworks.com/radar/platforms/kubernetes
https://thoughtworks.com/radar/techniques/service-mesh
https://www.solo.io/products/gloo/
https://www.envoyproxy.io/
https://linkerd.io/
https://thoughtworks.com/radar/platforms/istio
https://aws.amazon.com/app-mesh/
https://thoughtworks.com/radar/tools/open-policy-agent-opa
https://thoughtworks.com/radar/platforms/kubernetes
https://k8slens.dev/

© ThoughtWorks, Inc. All Rights Reserved.

25 | TECHNOLOGY RADAR

with an integrated environment for viewing
the current state of the cluster and its
workloads, visualizing cluster metrics
and changing configurations through
an embedded text editor. Rather than a
simple point-and-click interface, Lens brings
together the tools an administrator would
run from the command line into a single,
navigable interface. This tool is one of
several approaches that are trying to tame
the complexity of Kubernetes management.
We’ve yet to see a clear winner in this space,
but Lens strikes an interesting balance
between a graphical UI and command-line–
only tools.

Manifold
Assess

Manifold is a model-agnostic visual
debugger for machine learning (ML). Model
developers spend a significant amount of
time on iterating and improving an existing
model rather than creating a new one.
By shifting the focus from model space
to data space, Manifold supplements
the existing performance metrics with a
visual characteristics of the data set that
influences the model performance. We think
Manifold will be a useful tool to assess in the
ML ecosystem.

Sizzy
Assess

Building web applications that look just as
intended on a large number of devices and
screen sizes can be cumbersome. Sizzy is a
SaaS solution that shows many viewports
in a single browser window. The application
is rendered in all viewports simultaneously
and interactions with the application are
also synched across the viewports. In our
experience interacting with an application in
this way can make it easier to spot potential
issues earlier, before a visual regression
testing tool flags the issue in the build
pipeline. We should mention, though, that
some of our developers who tried Sizzy for
a while did, on balance, prefer to work with
the tooling provided by Chrome.

Snowpack
Assess

Snowpack is an interesting new entrant
in the field of JavaScript build tools. The
key improvement over other solutions is
that Snowpack makes it possible to build
applications with modern frameworks such
as React.js, Vue.js, and Angular without
the need for a bundler. Cutting out the
bundling step dramatically improves the

feedback cycle during development because
changes become available in the browser
almost immediately. For this magic to work,
Snowpack transforms the dependencies
in node_modules into single JavaScript
files in a new web_modules directory,
from where they can be imported as an
ECMAScript module (ESM). For IE11 and
other browsers that don’t support ESM, a
workaround is available. Unfortunately,
because no browser today can import CSS
from JavaScript, using CSS modules is not
straightforward.

tfsec
Assess

Security is everyone’s concern and capturing
risks early is always better than facing
problems later on. In the infrastructure as
code space, where Terraform is an obvious
choice to manage cloud environments,
we now also have tfsec, which is a static
analysis tool that helps to scan Terraform
templates and find any potential security
issues. It comes with preset rules for
different cloud providers including AWS
and Azure. We always like tools that help
to mitigate security risks, and tfsec not only
excels in identifying security risks, it’s also
easy to install and use.

Tools

Lens is one of several
different approaches that
are trying to tame the
complexity of Kubernetes
management.

(Lens)

tfsec is a static analysis
tool that helps to scan
Terraform templates and
find any potential security
issues.

(tfsec)

https://github.com/uber/manifold
https://sizzy.co/
https://thoughtworks.com/radar/tools/visual-regression-testing-tools
https://thoughtworks.com/radar/tools/visual-regression-testing-tools
https://www.snowpack.dev/
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://thoughtworks.com/radar/languages-and-frameworks/vue-js
https://thoughtworks.com/radar/languages-and-frameworks/angular
https://www.snowpack.dev/#importing-css
https://www.snowpack.dev/#importing-css
https://thoughtworks.com/radar/techniques/infrastructure-as-code
https://thoughtworks.com/radar/techniques/infrastructure-as-code
https://thoughtworks.com/radar/tools/terraform
https://github.com/liamg/tfsec
https://thoughtworks.com/radar/platforms/aws
https://thoughtworks.com/radar/platforms/azure

Languages &
Frameworks

TECHNOLOGY RADAR Vol. 22

© ThoughtWorks, Inc. All Rights Reserved.

27 | TECHNOLOGY RADAR

Adopt
77. React Hooks
78. React Testing Library
79. Vue.js

Trial
80. CSS-in-JS
81. Exposed
82. GraphQL Inspector
83. Karate
84. Koin
85. NestJS
86. PyTorch
87. Rust
88. Sarama
89. SwiftUI

Assess
90. Clinic.js Bubbleprof
91. Deequ
92. ERNIE
93. MediaPipe
94. Tailwind CSS
95. Tamer
96. Wire
97. XState

Hold
98. Enzyme

React Hooks
Adopt

React Hooks have introduced a new approach
to managing stateful logic; given React
components have always been closer to
functions than classes, Hooks have embraced
this and brought state to the functions,
instead of taking function as methods to the
state with classes. Based on our experience,
Hooks improve reuse of functionality among
components and code readability. Given
Hooks’ testability improvements, using React
Test Renderer and React Testing Library,
and their growing community support, we
consider them our approach of choice.

React Testing Library
Adopt

The JavaScript world moves pretty fast,
and as we gain more experience using a
framework our recommendations change.
The React Testing Library is a good example
of a framework that with deeper usage has
eclipsed the alternatives to become the
sensible default when testing React-based
frontends. Our teams like the fact that tests
written with this framework are less brittle
than with alternative frameworks such as
Enzyme, because you’re encouraged to
test component relationships individually
as opposed to testing all implementation
details. This mindset is brought by Testing

Languages &
Frameworks

84

Hold HoldAssess AssessTrial TrialAdopt Adopt

3 4

27

17

23

24

26

12

5

16

10

19

20

25

21

22

27

18

15

6

88

81

82

90

91

92
93

94

95

96

97

31

39

40

41

42

43

44

49 45

46 47 48

33
34

29

30

32

35

36
38

77

80

83

86

85

89

78

79

87

98

1

8

9

11

14
13

52

67 68

69
70

71

72

73

74

75

76

53 55

57
58

59

60

63

65

66

28

37

50
51

56

61
62

64

54

Library which React Testing Library is part
of and which provides a whole family of
libraries for Angular and Vue.js, for example.

Vue.js
Adopt

Vue.js has become one of the successfully
applied, loved and trusted frontend
JavaScript frameworks among our
community. Although there are other, well-
adopted alternatives, such as React.js, the
simplicity of Vue.js in API design, its clear

segregation of directives and components
(one file per component idiom) and its
simpler state management have made it a
compelling option among others.

CSS-in-JS
Trial

Since we first mentioned CSS-in-JS as
an emerging technique in 2017, it has
become much more popular, a trend we
also see in our work. With some solid
production experience under our belts,

https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/test-renderer.html
https://reactjs.org/docs/test-renderer.html
https://thoughtworks.com/radar/languages-and-frameworks/react-testing-library
https://testing-library.com/
https://thoughtworks.com/radar/languages-and-frameworks/enzyme
https://testing-library.com/
https://testing-library.com/
https://thoughtworks.com/radar/languages-and-frameworks/angular
https://thoughtworks.com/radar/languages-and-frameworks/vue-js
https://vuejs.org/
https://thoughtworks.com/radar/languages-and-frameworks/react-js

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 28

We’ve cautioned against the use of GraphQL
in the past, and we’re happy to see some
improvements in tooling around GraphQL
since. Most of our teams continue to
use GraphQL for server-side resource
aggregation, and by integrating GraphQL
Inspector in their CI pipelines, we’ve been
able to catch potential breaking changes in
the GraphQL schema.

Karate
Trial

Given our experience that tests are the only
API specifications that really matter, we’re
always on the lookout for new tools that
might help with testing. Karate is an API
testing framework whose unique feature
is that tests are written directly in Gherkin
without relying on a general-purpose
programming language to implement test
behavior. It’s a domain-specific language for
describing HTTP-based API tests. Our teams
like the readable specification that they get
with this tool and recommend to keep tests
with Karate in the upper levels of the testing
pyramid and not overload its use by making
very detailed assertions.

Koin
Trial

As Kotlin is used increasingly for both
mobile and server-side development, the
associated ecosystem continues to evolve.
Koin is a Kotlin framework that handles
one of the routine problems in software
development: dependency injection.
Although you can choose from a variety
of dependency injection frameworks for
Kotlin, our teams have come to prefer
the simplicity of Koin. Koin avoids using
annotations and injects either through

constructors or by mimicking Kotlin’s lazy
initialization so that objects are injected
only when needed. This is in contrast to
the statically compiled Dagger injection
framework for Android. Our developers like
the lightweight nature of this framework
and its built-in testability.

NestJS
Trial

The growth in popularity of Node.js
and trends such as Node overload have
led to the application of Node.js for
developing business applications. We
often see problems, such as scalability and
maintainability, with large JavaScript-based
applications. NestJS is a TypeScript-first
framework that makes the development
of Node.js applications safer and less error
prone. NestJS is opinionated and comes with
SOLID principles and an Angular-inspired
architecture out of the box. When building
Node.js microservices, NestJS is one of the
frameworks that our teams commonly
use to empower developers to create
testable, scalable, loosely coupled and easily
maintainable applications.

PyTorch
Trial

Our teams have continued to use and
appreciate the PyTorch machine learning
framework, and several teams prefer
PyTorch over TensorFlow. PyTorch exposes
the inner workings of ML that TensorFlow
hides, making it easier to debug, and
contains constructs that programmers
are familiar with such as loops and
actions. Recent releases have improved
performance of PyTorch, and we’ve been
using it successfully in production projects.

we can now recommend CSS-in-JS as a
technique to trial. A good starting point is
the styled components framework, which
we mentioned in our previous Radar. Next
to all the positives, though, there usually
is a downside when using CSS-in-JS: the
calculation of styles at runtime can cause
a noticeable lag for end users. With Linaria
we’re now seeing a new class of frameworks
that were created with this issue in mind.
Linaria employs a number of techniques
to shift most of the performance overhead
to build time. Alas, this does come with its
own set of trade-offs, most notably a lack of
dynamic style support in IE11.

Exposed
Trial

Through their extended use of Kotlin, our
development teams have gained experience
with more frameworks designed specifically
for Kotlin rather than using Java frameworks
with Kotlin. Although it’s been around for a
while, Exposed has caught our attention as a
lightweight object-relational mapper (ORM).
Exposed has two flavors of database access:
a typesafe internal DSL wrapping SQL and
an implementation of the data access object
(DAO) pattern. It supports features expected
from a mature ORM such as handling of
many-to-many references, eager loading,
and support for joins across entities. We
also like that the implementation works
without proxies and doesn’t rely on
reflection, which is certainly beneficial to
performance.

GraphQL Inspector
Trial

GraphQL Inspector lets you compare
changes between two GraphQL schemas.

Languages &
Frameworks

Koin is a Kotlin framework
that handles one of the
routine problems in
software development,
dependency injection.

(Koin)

NestJS is a TypeScript-first
framework that makes the
development of NodeJS
applications safer and less
error prone.

(NestJS)

https://thoughtworks.com/radar/languages-and-frameworks/graphql
https://thoughtworks.com/radar/techniques/graphql-for-server-side-resource-aggregation
https://thoughtworks.com/radar/techniques/graphql-for-server-side-resource-aggregation
https://intuit.github.io/karate/
https://martinfowler.com/articles/practical-test-pyramid.html
https://martinfowler.com/articles/practical-test-pyramid.html
https://thoughtworks.com/radar/languages-and-frameworks/kotlin
https://insert-koin.io/
https://thoughtworks.com/radar/languages-and-frameworks/dagger
https://thoughtworks.com/radar/platforms/node-overload
https://nestjs.com/
https://thoughtworks.com/radar/languages-and-frameworks/typescript
http://pytorch.org/
https://thoughtworks.com/radar/languages-and-frameworks/tensorflow
https://thoughtworks.com/radar/languages-and-frameworks/styled-components
https://calendar.perfplanet.com/2019/the-unseen-performance-costs-of-css-in-js-in-react-apps/
https://linaria.now.sh/
https://thoughtworks.com/radar/languages-and-frameworks/kotlin
https://github.com/JetBrains/Exposed
https://github.com/kamilkisiela/graphql-inspector

© ThoughtWorks, Inc. All Rights Reserved.

29 | TECHNOLOGY RADAR

Rust
Trial

Rust is continuously gaining in popularity.
We’ve had heated discussions about which
is better, Rust or C++/Go, without a clear
winner. However, we’re glad to see Rust
has improved significantly, with more
built-in APIs being added and stabilized,
including advanced async support, since
we mentioned it in our previous Radar. In
addition, Rust has also inspired the design
of new languages. For example, the Move
language on Libra borrows Rust’s way of
managing memory to manage resources,
ensuring that digital assets can never be
copied or implicitly discarded.

Sarama
Trial

Sarama is a Go client library for Apache
Kafka. If you’re developing your APIs in Go,
you’ll find Sarama quite easy to set up and
manage as it doesn’t depend on any native
libraries. Sarama has two types of APIs —
a high-level API for easily producing and
consuming messages and a low-level API for
controlling bytes on the wire.

SwiftUI
Trial

Apple has taken a big step forward
with their new SwiftUI framework for
implementing user interfaces on the macOS
and iOS platforms. We like that SwiftUI
moves beyond the somewhat kludgy
relationship between Interface Builder and
Xcode and adopts a coherent, declarative
and code-centric approach. You can now
view your code and the resulting visual
interface side by side in Xcode 11, making

for a much better developer experience.
The SwiftUI framework also draws
inspiration from the React.js world that
has dominated web development in recent
years. Immutable values in view models and
an asynchronous update mechanism make
for a unified reactive programming model.
This gives developers an entirely native
alternative to similar reactive frameworks
such as React Native or Flutter. SwiftUI
definitely represents the future of Apple
UI development, and although new, it has
shown its benefits. We’ve been having great
experience with it — and its shallow learning
curve. It’s worth noting that you should
know your customer’s use case before
jumping into using SwiftUI, given that it
doesn’t support iOS 12 or below.

Clinic.js Bubbleprof
Assess

With the aim of improving performance
in our code, profiling tools are very useful
to identify bottlenecks or delays in code
which are hard to identify, especially
in asynchronous operations. Clinic.js
Bubbleprof represents visually the async
operations in Node.js processes, drawing a
map of delays in the application’s flow. We
like this tool because it helps developers to
easily identify and prioritize what to improve
in the code.

Deequ
Assess

There are still some tool gaps when applying
good software engineering practices in
data engineering. Attempting to automate
data quality checks between different
steps in a data pipeline, one of our teams
was surprised when they found only a few

tools in this space. They settled on Deequ,
a library for writing tests that resemble
unit tests for data sets. Deequ is built on
top of Apache Spark, and even though it’s
published by AWS Labs it can be used in
environments other than AWS.

ERNIE
Assess

In the previous edition of the Radar we
had BERT — which is a key milestone in the
NLP landscape. Last year, Baidu released
ERNIE 2.0 (Enhanced Representation
through kNowledge IntEgration) which
outperformed BERT on seven GLUE
language understanding tasks and on all
nine of the Chinese NLP tasks. ERNIE, like
BERT, provides unsupervised pretrained
language models, which can be fine-
tuned by adding output layers to create
state-of-the-art models for a variety of
NLP tasks. ERNIE differs from traditional
pretraining methods in that it is a continual
pretraining framework. Instead of training
with a small number of pretraining
objectives, it could constantly introduce
a large variety of pretraining tasks to
help the model efficiently learn language
representations. We’re pretty excited about
the advancements in NLP and are looking
forward to experimenting with ERNIE on our
projects.

MediaPipe
Assess

MediaPipe is a framework for building
MultiModal (such as video, audio, time
series data, etc.), cross-platform (for
example, Android, iOS, Web, and edge
devices) and applied ML pipelines. It
provides multiple capabilities, including face

Languages &
Frameworks

Deequ is a library for
writing tests that resemble
unit tests for data sets
which can help when
automating data quality
checks between different
steps in a data pipeline.

(Deequ)

ERNIE provides
unsupervised pretrained
language models, which
can be fine-tuned by
adding output layers to
create state-of-the-art
models for a variety of
NLP tasks.

(ERNIE)

http://www.rust-lang.org/
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://developers.libra.org/docs/move-overview
https://developers.libra.org/docs/move-overview
https://github.com/Shopify/sarama
https://thoughtworks.com/radar/tools/apache-kafka
https://thoughtworks.com/radar/tools/apache-kafka
https://developer.apple.com/xcode/swiftui/
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://thoughtworks.com/radar/languages-and-frameworks/react-native
https://thoughtworks.com/radar/languages-and-frameworks/flutter
https://clinicjs.org/bubbleprof/
https://clinicjs.org/bubbleprof/
https://github.com/awslabs/deequ
https://thoughtworks.com/radar/platforms/apache-spark
https://thoughtworks.com/radar/platforms/aws
https://thoughtworks.com/radar/techniques/bert
https://github.com/PaddlePaddle/ERNIE/
https://github.com/google/mediapipe

© ThoughtWorks, Inc. All Rights Reserved.

TECHNOLOGY RADAR | 30

detection, hand tracking, gesture detection
and object detection. Although MediaPipe
is primarily deployed to mobile devices, it’s
started to show up in the browser thanks to
WebAssembly and XNNPack ML Inference
Library. We’re exploring MediaPipe for some
AR use cases and like what we see so far.

Tailwind CSS
Assess

CSS tools and frameworks offer predesigned
components for fast results; after a
while, however, they can complicate
customization. Tailwind CSS proposes an
interesting approach by providing lower-
level utility CSS classes to create building
blocks without opinionated styles and
aiming for easy customization. The breadth
of the low-level utilities allows you to
avoid writing any classes or CSS on your
own which leads to a more maintainable
codebase in the long term. It seems that
Tailwind CSS offers the right balance
between reusability and customization to
create visual components.

Tamer
Assess

If you need to ingest data from relational
databases into a Kafka topic, consider
Tamer, which labels itself “a domesticated

JDBC source connector for Kafka.” Despite
being a relatively new framework, we’ve
found Tamer to be more efficient than the
Kafka JDBC connector, especially when huge
amounts of data are involved.

Wire
Assess

The Golang community has had its fair
share of dependency injection skeptics,
partly because they confused the pattern
with specific frameworks, and developers
with a system-programming background
naturally dislike runtime overhead caused
by reflection. Then along came Wire, a
compile-time dependency injection tool that
can generate code and wire components
together. Wire has no additional runtime
overhead, and the static dependency graph
is easier to reason about. Whether you
handwrite your code or use frameworks, we
recommend using dependency injection to
encourage modular and testable designs.

XState
Assess

We’ve featured several state management
libraries in the Radar before, but XState
takes a slightly different approach. It’s a
simple JavaScript and TypeScript framework
for creating finite state machines and

Languages &
Frameworks

Tailwind CSS proposes
an interesting approach
by providing lower-level
utility CSS classes to
create building blocks
without opinionated
styles and aiming for easy
customization.

(Tailwind CSS)

Wire is a compile-time
dependency injection tool
that can both generate
code and wire components
together.

(Wire)

visualizing them as state charts. It integrates
with the more popular reactive JavaScript
frameworks (Vue.js, Ember.js, React.js and
RxJS) and is based on the W3C standard
for finite state machines. Another notable
feature is the serialization of machine
definitions. One thing that we’ve found
helpful when creating finite state machines
in other contexts (particularly when writing
game logic) is the ability to visualize states
and their possible transitions; we like the
fact that it’s really easy to do this with
XState’s visualizer.

Enzyme
Hold

We don’t always move deprecated tools
to Hold in the Radar, but our teams feel
strongly that Enzyme has been replaced for
unit testing React UI components by React
Testing Library. Teams using Enzyme have
found that its focus on testing component
internals leads to brittle, unmaintainable
tests.

https://tailwindcss.com/
https://github.com/laserdisc-io/tamer
https://martinfowler.com/articles/injection.html
https://github.com/google/wire
https://xstate.js.org/docs/
https://thoughtworks.com/radar/languages-and-frameworks/typescript
https://thoughtworks.com/radar/languages-and-frameworks/vue-js
https://thoughtworks.com/radar/languages-and-frameworks/ember-js
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://rxjs.dev/
https://xstate.js.org/viz/
http://airbnb.io/enzyme/
https://thoughtworks.com/radar/languages-and-frameworks/react-js
https://testing-library.com/docs/intro
https://testing-library.com/docs/intro

We are a software consultancy and
community of passionate purpose-led
individuals, 7000+ people strong across
43 offices in 14 countries. Over our 25+
year history, we have helped our clients
solve complex business problems
where technology is the differentiator.
When the only constant is change, we
prepare you for the unpredictable.

Want to stay up-to-date with all
Radar-related news and insights?
Follow us on your favorite social channel or

become a subscriber.

subscribe now

https://thght.works/2zgsQay
https://thght.works/TWFB
https://thght.works/TWIN
https://thght.works/TWLI
https://thght.works/TWTW
https://thght.works/2W86wsP

thoughtworks.com/radar
#TWTechRadar

https://thght.works/3ccAYYy
https://thght.works/2NB87Sx
https://thght.works/2zgsQay

