
An opinionated guide to
technology frontiers

Volume 26

Technology Radar

https://thght.works/3t6Qu2O

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

About the Radar 3

Radar at a glance 4

Contributors 5

Themes 6

The Radar 8

Techniques 11

Platforms 19

Tools 25

Languages and Frameworks 33

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

About the
Radar
Thoughtworkers are passionate about
technology. We build it, research it,
test it, open source it, write about it
and constantly aim to improve it — for
everyone. Our mission is to champion
software excellence and revolutionize IT.
We create and share the Thoughtworks
Technology Radar in support of that
mission. The Thoughtworks Technology
Advisory Board, a group of senior
technology leaders at Thoughtworks,
creates the Radar. They meet regularly to
discuss the global technology strategy for
Thoughtworks and the technology trends
that significantly impact our industry.

The Radar captures the output of the
Technology Advisory Board’s discussions
in a format that provides value to a wide
range of stakeholders, from developers
to CTOs. The content is intended as a
concise summary.

We encourage you to explore these
technologies. The Radar is graphical in
nature, grouping items into techniques,
tools, platforms and languages &
frameworks. When Radar items could
appear in multiple quadrants, we chose
the one that seemed most appropriate.
We further group these items in four rings
to reflect our current position on them.

For more background on the Radar, see
thoughtworks.com/radar/faq.

https://thght.works/3CGGXmh

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Radar at a glance
The Radar is all about tracking interesting things, which we refer to as blips. We organize the blips in the
Radar using two categorizing elements: quadrants and rings. The quadrants represent different kinds of
blips. The rings indicate what stage in an adoption lifecycle we think they should be in.

A blip is a technology or technique that plays a role in software development. Blips are things that
are “in motion” — that is, we find their position in the Radar is changing — usually indicating that
we’re finding increasing confidence in them as they move through the rings.

Our Radar is forward-looking. To make room for new items, we fade items that haven’t moved
recently, which isn’t a reflection on their value but rather on our limited Radar real estate.

Hold Assess Trial Adopt

Adopt: We feel strongly that the industry
should be adopting these items. We use
them when appropriate in our projects.

Trial: Worth pursuing. It’s important to
understand how to build up this capability.
Enterprises can try this technology on a
project that can handle the risk.

Assess: Worth exploring with the goal of
understanding how it will affect your
enterprise.

Hold: Proceed with caution.

New Moved in/out No change

4

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Contributors
The Technology Advisory Board (TAB)
is a group of 18 senior technologists at
Thoughtworks. The TAB meets twice a
year face-to-face and biweekly by phone.
Its primary role is to be an advisory
group for Thoughtworks CTO,
Rebecca Parsons.

The TAB acts as a broad body that can
look at topics that affect technology and
technologists at Thoughtworks. With the
ongoing global pandemic, we once again
created this volume of the Technology
Radar via a virtual event.

Rebecca Parsons (CTO)
Martin Fowler (Chief Scientist)
Bharani Subramaniam
Birgitta Böckeler
Brandon Byars
Camilla Falconi Crispim
Cassie Shum
Erik Dörnenburg
Fausto de la Torre
Hao Xu
Ian Cartwright
James Lewis
Lakshminarasimhan Sudarshan
Mike Mason
Neal Ford
Perla Villarreal
Scott Shaw
Shangqi Liu
Zhamak Dehghani

https://www.thoughtworks.com/profiles/rebecca-parsons
https://www.thoughtworks.com/profiles/martin-fowler
https://www.thoughtworks.com/profiles/bharani-subramaniam
https://www.thoughtworks.com/profiles/birgitta-bockeler
https://www.thoughtworks.com/profiles/brandon-byars
https://www.thoughtworks.com/profiles/camilla-crispim
https://www.thoughtworks.com/profiles/cassandra-shum
https://www.thoughtworks.com/profiles/erik-dornenburg
https://www.thoughtworks.com/profiles/fausto-de-la-torre
https://www.thoughtworks.com/profiles/xu-hao
https://www.thoughtworks.com/profiles/ian-cartwright
https://www.thoughtworks.com/profiles/james-lewis
https://www.thoughtworks.com/profiles/lakshminarasimhan-sudarshan
https://www.thoughtworks.com/profiles/mike-mason
https://www.thoughtworks.com/profiles/neal-ford
https://www.thoughtworks.com/profiles/perla-villarreal
https://www.thoughtworks.com/profiles/scott-shaw
https://www.thoughtworks.com/profiles/liu-shangqi
https://www.thoughtworks.com/profiles/zhamak-dehghani

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

The Bizarre Bazaar: The Changing Economics
of Open-Source Software
At Thoughtworks, we’ve long been fans of open-source software, popularized in part by Eric
Raymond’s famous essay “The Cathedral and the Bazaar.” Open-source software improves developer
mobility and crowdsources both bug fixes and innovation. However, attempts at commercialization
demonstrate the enormous economic complexity of the current ecosystem. See, for example, AWS
forking Elasticsearch to OpenSearch in September 2021 in response to Elastic changing their license
to require cloud service providers who profit off their work to contribute back. This shows how
difficult it can be for commercial open-source software to maintain a competitive moat. (The same
concern applies with free closed-source software, as we witnessed some companies exploring
Docker Desktop alternatives because of Docker’s ongoing effort to find the right commercial model.)
Sometimes the power dynamics work in reverse: because Facebook funded Presto as an open-
source product, the maintainers were able to keep the IP and rebrand it as Trino after they left the
company, in effect benefiting from Facebook’s investment. The situation is further muddied by the
amount of critical infrastructure that isn’t corporate-sponsored, where companies usually only notice
how reliant they are on unpaid labor when a critical security bug is discovered (as recently happened
with Log4J). In some cases, funding hobbyist maintainers through GitHub or Patreon provides
enough lift to make a difference; in others it simply creates an additional feeling of responsibility on
top of their day job and contributes to burnout. We continue to be strong supporters of open-source
software but recognize that the economics are becoming increasingly bizarre, and there are no easy
solutions to finding the right balance.

Software Supply Chain Innovations
Public instances of severe problems — the Equifax data breach, SolarWinds attack, Log4J remote
zero-day vulnerability and so on — were caused by poor governance of the software supply chain.
Teams now realize that responsible engineering practices include validating and governing project
dependencies, and this drives a number of blips in this edition of the Radar. Entries include checklists
and standards such as Supply chain Levels for Software Artifacts (SLSA), a Google-backed
consortium to provide guidance on standard threats to the supply chain, and CycloneDX, another set
of standards driven by the OWASP community. We also feature concrete tools such as Syft, which
generates a Software Bill of Materials (SBOM) from container images. Hackers are increasingly
taking advantage of the asymmetrical nature of offense and defense in the security arena — they
only need to find one vulnerability, whereas defenders must secure the entire attack surface — while
employing increasingly sophisticated hacking techniques. Improved supply chain security is a critical
piece of our response as we work to keep systems secure.

Themes

6

https://thoughtworks.com/radar/techniques/slsa
https://thoughtworks.com/radar/platforms/cyclonedx
https://thoughtworks.com/radar/tools/syft
https://thoughtworks.com/radar/techniques/software-bill-of-materials

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Why Do Developers Keep Implementing State Management in React?
Burgeoning categories of frameworks appear to be a common pattern in the Radar: a foundational
framework becomes popular, followed by a raft of tools creating an ecosystem for common
deficiencies and enhancements, ending with consolidation around a few popular tools. However,
React state management seems resistant to this common tendency. Ever since Redux was released,
we’ve seen a steady stream of tools and frameworks that manage state in slightly different ways,
each with a different set of trade-offs. We don’t know why; we can only speculate: Is this the natural
churn the JavaScript ecosystem seems to promote? Is it an underlying deficiency in React, a fun
and seemingly tractable problem that encourages developers to experiment? Or is it the permanent
impedance mismatch between a document-reading format (web browsers) and the interactivity (and
state) required to host application development atop documents? We don’t know the reason, but we
look forward to the next round of attempts at solving this seemingly perpetual problem.

The Neverending Quest for The Master Data Catalog
The desire to get more value out of corporate data assets drives much of the investment we’re
seeing right now in digital technology. At its core, this effort is often focused on better ways
to find and access all the relevant data. For nearly as long as businesses have been collecting
digital data, there have been efforts to rationalize and catalog it into a single, top-down corporate
directory. But time after time, this intuitively appealing notion runs up against the hard realities of
complexity, redundancy and ambiguity inherent in large organizations. Recently we’ve noticed a
renewed interest in corporate data catalogs and a surge of Radar blip proposals for clever new tools
such as Collibra and DataHub. These tools can provide consistent, discoverable access to lineage
and metadata across silos, but their expanding feature sets also extend to governance, quality
management, publishing and more.

In contrast to this trend, there also seems to be a growing movement away from centralized, top-
down data management and toward federated governance and discovery based on a data mesh
architecture. This approach addresses the inherent complexity of corporate data by setting
expectations and standards centrally but segregating data custodianship along business domain
lines. Domain-oriented data product teams control and share their own metadata including
discoverability, quality and other information. In this scenario, the catalog is just a way to surface
information for searching and browsing. The resulting data catalogs are simpler and easier to
maintain, reducing the need for richly featured cataloging and governance platforms.

https://thoughtworks.com/radar/platforms/collibra
https://thoughtworks.com/radar/platforms/datahub

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Hold HoldAssess AssessTrial TrialAdopt Adopt

3 1

2435

36

37

38

39

40

41
42

43

29

34

32

412

13

14

19

21

1520

16

17

22

18

5

6

7

9 11

45 49

60

61 62
63

64 65

66
67

68

69

70

71

51 53

57
58

59

52

74

79
80

81

82 83
84

85

86 87

88

89
90

91

93

92

75

77

78

30

31

72

73

76

2

8 10

23

25

26

27
28

33

44

46

47

50

54
55

56

48

The Radar

New Moved in/out No change

8

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Adopt
1. Four key metrics
2. Single team remote wall

Trial
3. Data mesh
4. Definition of production readiness
5. Documentation quadrants
6. Rethinking remote standups
7. Server-driven UI
8. Software Bill of Materials
9. Tactical forking
10. Team cognitive load
11. Transitional architecture

Assess
12. CUPID
13. Inclusive design
14. Operator pattern for nonclustered

resources
15. Service mesh without sidecar
16. SLSA
17. The streaming data warehouse
18. TinyML

Hold
19. Azure Data Factory for orchestration
20. Miscellaneous platform teams
21. Production data in test environments
22. SPA by default

Adopt
—

Trial
23. Azure DevOps
24. Azure Pipeline templates
25. CircleCI
26. Couchbase
27. eBPF
28. GitHub Actions
29. GitLab CI/CD
30. Google BigQuery ML
31. Google Cloud Dataflow
32. Reusable workflows in Github Actions
33. Sealed Secrets
34. VerneMQ

Assess
35. actions-runner-controller
36. Apache Iceberg
37. Blueboat
38. Cloudflare Pages
39. Colima
40. Collibra
41. CycloneDX
42. Embeddinghub
43. Temporal

Hold
—

Techniques Platforms

The Radar

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Adopt
44. tfsec

Trial
45. AKHQ
46. cert-manager
47. Cloud Carbon Footprint
48. Conftest
49. kube-score
50. Lighthouse
51. Metaflow
52. Micrometer
53. NUKE
54. Pactflow
55. Podman
56. Sourcegraph
57. Syft
58. Volta
59. Web Test Runner

Assess
60. CDKTF
61. Chrome Recorder panel
62. Excalidraw
63. GitHub Codespaces
64. GoReleaser
65. Grype
66. Infracost
67. jc
68. skopeo
69. SQLFluff
70. Terraform Validator
71. Typesense

Hold
—

Adopt
72. SwiftUI
73. Testcontainers

Trial
74. Bob
75. Flutter-Unity widget
76. Kotest
77. Swift Package Manager
78. Vowpal Wabbit

Assess
79. Android Gradle plugin - Kotlin DSL
80. Azure Bicep
81. Capacitor
82. Java 17
83. Jetpack Glance
84. Jetpack Media3
85. MistQL
86. npm workspaces
87. Remix
88. ShedLock
89. SpiceDB
90. sqlc
91. The Composable Architecture
92. WebAssembly
93. Zig

Hold
—

Tools Languages and Frameworks

The Radar

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Techniques

Hold HoldAssess AssessTrial TrialAdopt Adopt

3 1

2435

36

37

38

39

40

41
42

43

29

34

32

412

13

14

19

21

1520

16

17

22

18

5

6

7

9 11

45 49

60

61 62
63

64 65

66
67

68

69

70

71

51 53

57
58

59

52

74

79
80

81

82 83
84

85

86 87

88

89
90

91

93

92

75

77

78

30

31

72

73

76

2

8 10

23

25

26

27
28

33

44

46

47

50

54
55

56

48

Adopt
1. Four key metrics
2. Single team remote wall

Trial
3. Data mesh
4. Definition of production readiness
5. Documentation quadrants
6. Rethinking remote standups
7. Server-driven UI
8. Software Bill of Materials
9. Tactical forking
10. Team cognitive load
11. Transitional architecture

Assess
12. CUPID
13. Inclusive design
14. Operator pattern for nonclustered

resources
15. Service mesh without sidecar
16. SLSA
17. The streaming data warehouse
18. TinyML

Hold
19. Azure Data Factory for orchestration
20. Miscellaneous platform teams
21. Production data in test environments
22. SPA by default

New Moved in/out No change

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

1. Four key metrics
Adopt
To measure software delivery performance, more and more organizations are defaulting to the four
key metrics as defined by the DORA research program: change lead time, deployment frequency,
mean time to restore (MTTR) and change fail percentage. This research and its statistical analysis
have shown a clear link between high-delivery performance and these metrics; they provide a great
leading indicator for how a delivery organization as a whole is doing.

We’re still big proponents of these metrics, but we’ve also learned some lessons. We’re still observing
misguided approaches with tools that help teams measure these metrics based purely on their
continuous delivery (CD) pipelines. In particular when it comes to the stability metrics (MTTR and
change fail percentage), CD pipeline data alone doesn’t provide enough information to determine
what a deployment failure with real user impact is. Stability metrics only make sense if they include
data about real incidents that degrade service for the users.

We recommend always to keep in mind the ultimate intention behind a measurement and use it to
reflect and learn. For example, before spending weeks building up sophisticated dashboard tooling,
consider just regularly taking the DORA quick check in team retrospectives. This gives the team the
opportunity to reflect on which capabilities they could work on to improve their metrics, which can
be much more effective than overdetailed out-of-the-box tooling. Keep in mind that these four key
metrics originated out of the organization-level research of high-performing teams, and the use of
these metrics at a team level should be a way to reflect on their own behaviors, not just another set
of metrics to add to the dashboard.

2. Single team remote wall
Adopt
A single team remote wall is a simple technique to reintroduce the team wall virtually. We recommend
that distributed teams adopt this approach; one of the things we hear from teams who moved to
remote working is that they miss having the physical team wall. This was a single place where all the
various story cards, tasks, status and progress could be displayed, acting as an information radiator
and hub for the team. The wall acted as an integration point with the actual data being stored in
different systems. As teams have become remote, they’ve had to revert to looking into the individual
source systems and getting an “at a glance” view of a project has become very difficult. While there
might be some overhead in keeping this up-to-date, we feel the benefits to the team are worth it. For
some teams, updating the physical wall formed part of the daily “ceremonies” the team did together,
and the same can be done with a remote wall.

3. Data mesh
Trial
Data mesh is a decentralized organizational and technical approach in sharing, accessing and
managing data for analytics and ML. Its objective is to create a sociotechnical approach that scales
out getting value from data as the organization’s complexity grows and as the use cases for data
proliferate and the sources of data diversify. Essentially, it creates a responsible data-sharing model
that is in step with organizational growth and continuous change. In our experience, interest in the
application of data mesh has grown tremendously. The approach has inspired many organizations to
embrace its adoption and technology providers to repurpose their existing technologies for a mesh
deployment. Despite the great interest and growing experience in data mesh, its implementations

Techniques

12

https://www.devops-research.com/
https://www.devops-research.com/quickcheck.html
https://www.devops-research.com/research.html#capabilities
https://martinfowler.com/articles/data-monolith-to-mesh.html

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

face high cost of integration. Moreover, its adoption remains limited to sections of larger
organizations and technology vendors are distracting the organizations from the hard socio aspects
of data mesh — decentralized data ownership and a federated governance operating model.

These ideas are explored in Data Mesh, Delivering Data-Driven Value at Scale, which guides
practitioners, architects, technical leaders and decision makers on their journeys from traditional
big data architecture to data mesh. It provides a complete introduction to data mesh principles and
its constituents; it covers how to design a data mesh architecture, guide and execute a data mesh
strategy and navigate organizational design to a decentralized data ownership model. The goal
of the book is to create a new framework for deeper conversations and lead to the next phase in
maturity of data mesh.

4. Definition of production readiness
Trial
In an organization that practices the “you build it, you run it” principle, a definition of production
readiness (DPR) is a useful technique to support teams in assessing and preparing the operational
readiness of new services. Implemented as a checklist or a template, a DPR gives teams guidance
on what to think about and consider before they bring a new service into production. While DPRs do
not define specific service-level objectives (SLOs) to fulfill (those would be hard to define one-size-
fits-all), they remind teams what categories of SLOs to think of, what organizational standards to
comply with and what documentation is required. DPRs provide a source of input that teams turn into
respective product-specific requirements around, for example, observability and reliability, to feed
into their product backlogs.

DPRs are closely related to Google’s concept of a production readiness review (PRR). In
organizations that are too small to have a dedicated site reliability engineering team, or who are
concerned that a review board process could negatively impact a team’s flow to go live, having a
DPR can at least provide some guidance and document the agreed-upon criteria for the organization.
For highly critical new services, extra scrutiny on fulfilling the DPR can be added via a PRR
when needed.

5. Documentation quadrants
Trial
Writing good documentation is an overlooked aspect of software development that is often left to the
last minute and done in a haphazard way. Some of our teams have found documentation quadrants
a handy way to ensure the right artifacts are being produced. This technique classifies artifacts
along two axes: The first axis relates to the nature of the information, practical or theoretical; the
second axis describes the context in which the artifact is used, studying or working. This defines
four quadrants in which artifacts such as tutorials, how-to guides or reference pages can be placed
and understood. This classification system not only ensures that critical artifacts aren’t overlooked
but also guides the presentation of the content. We’ve found this particularly useful for creating
onboarding documentation that brings developers up to speed quickly when they join a new team.

Techniques

13

https://www.amazon.com/Data-Mesh-Delivering-Data-Driven-Value/dp/1492092398
https://sre.google/sre-book/evolving-sre-engagement-model/#:%7E:text=The%20most%20typical,of%20a%20service
https://documentation.divio.com/

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

6. Rethinking remote standups
Trial
The term standup originated from the idea of standing up during this daily sync meeting, with the
goal of making it short. It’s a common principle many teams try to abide by in their standups: keep
it crisp and to the point. But we’re now seeing teams challenge that principle and rethinking remote
standups. When co-located, there are lots of opportunities during the rest of the day to sync up
with each other spontaneously, as a complement to the short standup. Remotely, some of our teams
are now experimenting with a longer meeting format, similar to what the folks at Honeycomb call a

“meandering team sync.”

It’s not about getting rid of a daily sync altogether; we still find that very important and valuable,
especially in a remote setup. Instead, it’s about extending the time blocked in everybody’s calendars
for the daily sync to up to an hour, and use it in a way that makes some of the other team meetings
obsolete and brings the team closer together. Activities can still include the well-tried walkthrough of
the team board but are then extended by more detailed clarification discussions, quick decisions, and
taking time to socialize. The technique is considered successful if it reduces the overall meeting load
and improves team bonding.

7. Server-driven UI
Trial
When putting together a new volume of the Radar, we’re often overcome by a sense of déjà vu, and
the technique of server-driven UI sparks a particularly strong case with the advent of frameworks
that allow mobile developers to take advantage of faster change cycles while not falling foul of an
app store’s policies around revalidation of the mobile app itself. We’ve blipped about this before from
the perspective of enabling mobile development to scale across teams. Server-driven UI separates
the rendering into a generic container in the mobile app while the structure and data for each view
is provided by the server. This means that changes that once required a round trip to an app store
can now be accomplished via simple changes to the responses the server sends. Note, we’re not
recommending this approach for all UI development, indeed we’ve experienced some horrendous,
overly configurable messes, but with the backing of behemoths such as AirBnB and Lyft, we suspect
it’s not only us at Thoughtworks getting tired of everything being done client side. Watch this space.

8. Software Bill of Materials
Trial
With continued pressure to keep systems secure and no reduction in the general threat landscape, a
machine-readable Software Bill of Materials (SBOM) may help teams stay on top of security problems
in the libraries that they rely on. The recent Log4Shell zero-day remote exploit was critical and
widespread, and if teams had had an SBOM ready, it could have been scanned for and fixed quickly.
We’ve now had production experience using SBOMs on projects ranging from small companies to
large multinationals and even government departments, and we’re convinced they provide a benefit.
Tools such as Syft make it easy to use an SBOM for vulnerability detection.

9. Tactical forking
Trial
Tactical forking is a technique that can assist with restructuring or migrating from monolithic
codebases to microservices. Specifically, this technique offers one possible alternative to the more
common approach of fully modularizing the codebase first, which in many circumstances can take a

Techniques

14

https://www.honeycomb.io/blog/standup-meetings-are-dead/
https://thoughtworks.com/radar/techniques/micro-frontends-for-mobile
https://thoughtworks.com/radar/techniques/spa-by-default
https://en.wikipedia.org/wiki/Log4Shell
https://thoughtworks.com/radar/tools/syft
https://faustodelatog.wordpress.com/2020/10/16/tactical-forking/

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

very long time or be very challenging to achieve. With tactical forking a team can create a new fork
of the codebase and use that to address and extract one particular concern or area while deleting
the unnecessary code. Use of this technique would likely be just one part of a longer-term plan for
the overall monolith.

10. Team cognitive load
Trial
A system’s architecture mimics an organizational structure and its communication. It’s not big news
that we should be intentional about how teams interact — see, for instance, the Inverse Conway
Maneuver. Team interaction is one of the variables for how fast and how easily teams can deliver
value to their customers. We were happy to find a way to measure these interactions; we used the
Team Topologies author’s assessment which gives you an understanding of how easy or difficult the
teams find it to build, test and maintain their services. By measuring team cognitive load, we could
better advise our clients on how to change their teams’ structure and evolve their interactions.

11. Transitional architecture
Trial
A transitional architecture is a useful practice used when replacing legacy systems. Much like
scaffolding might be built, reconfigured and finally removed during construction or renovation
of a building, you often need interim architectural steps during legacy displacement. Transitional
architectures will be removed or replaced later on, but they’re not just throwaway work given the
important role they play in reducing risk and allowing a difficult problem to be broken into smaller
steps. Thus they help with avoiding the trap of defaulting to a “big bang” legacy replacement
approach, because you cannot make smaller interim steps line up with a final architectural vision.
Care is needed to make sure the architectural “scaffolding” is eventually removed, lest it just become
technical debt later on.

12. CUPID
Assess
How do you approach writing good code? How do you judge if you’ve written good code? As software
developers, we’re always looking for catchy rules, principles and patterns that we can use to share a
language and values with each other when it comes to writing simple, easy-to-change code.

Daniel Terhorst-North has recently made a new attempt at creating such a checklist for good code.
He argues that instead of sticking to a set of rules like SOLID, using a set of properties to aim for is
more generally applicable. He came up with what he calls the CUPID properties to describe what we
should strive for to achieve “joyful” code: Code should be composable, follow the Unix philosophy
and be predictable, idiomatic and domain based.

13. Inclusive design
Assess
We recommend organizations assess inclusive design as a way of making sure accessibility is
treated as a first-class requirement. All too often requirements around accessibility and inclusivity
are ignored until just before, if not just after, the release of software. The cheapest and simplest way
to accommodate these requirements, while also providing early feedback to teams, is to incorporate

Techniques

15

https://thoughtworks.com/radar/techniques/inverse-conway-maneuver
https://thoughtworks.com/radar/techniques/inverse-conway-maneuver
https://teamtopologies.com/book
https://github.com/TeamTopologies/Team-Cognitive-Load-Assessment
https://martinfowler.com/articles/patterns-legacy-displacement/transitional-architecture.html
https://en.wikipedia.org/wiki/SOLID
https://dannorth.net/2022/02/10/cupid-for-joyful-coding/
https://www.microsoft.com/design/inclusive/

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

them fully into the development process. In the past, we’ve highlighted techniques that perform a
“shift-left” for security and cross-functional requirements; one perspective on this technique is that it
achieves the same goal for accessibility.

14. Operator pattern for nonclustered resources
Assess
We’re continuing to see increasing use of the Kubernetes Operator pattern for purposes other
than managing applications deployed on the cluster. Using the Operator pattern for nonclustered
resources takes advantage of custom resource definitions and the event-driven scheduling
mechanism implemented in the Kubernetes control plane to manage activities that are related to
yet outside of the cluster. This technique builds on the idea of Kube-managed cloud services and
extends it to other activities, such as continuous deployment or reacting to changes in external
repositories. One advantage of this technique over a purpose-built tool is that it opens up a wide
range of tools that either come with Kubernetes or are part of the wider ecosystem. You can use
commands such as diff, dry-run or apply to interact with the operator’s custom resources. Kube’s
scheduling mechanism makes development easier by eliminating the need to orchestrate activities in
the proper order. Open-source tools such as Crossplane, Flux and Argo CD take advantage of this
technique, and we expect to see more of these emerge over time. Although these tools have their
use cases, we’re also starting to see the inevitable misuse and overuse of this technique and need to
repeat some old advice: Just because you can do something with a tool doesn’t mean you should. Be
sure to rule out simpler, conventional approaches before creating a custom resource definition and
taking on the complexity that comes with this approach.

15. Service mesh without sidecar
Assess
Service mesh is usually implemented as a reverse-proxy process, aka sidecar, deployed alongside
each service instance. Although these sidecars are lightweight processes, the overall cost and
operational complexity of adopting service mesh increases with every new instance of the service
requiring another sidecar. However, with the advancements in eBPF, we’re observing a new service
mesh without sidecar approach where the functionalities of the mesh are safely pushed down to
the OS kernel, thereby enabling services in the same node to communicate transparently via sockets
without the need of additional proxies. You can try this with Cilium service mesh and simplify the
deployment from one proxy-per-service to one proxy-per-node. We’re intrigued by the capabilities of
eBPF and find this evolution of service mesh to be important to assess.

16. SLSA
Assess
As software continues to grow in complexity, the threat vector of software dependencies becomes
increasingly challenging to guard against. The recent Log4J vulnerability showed how difficult it
can be to even know those dependencies — many companies who didn’t use Log4J directly were
unknowingly vulnerable simply because other software in their ecosystem relied on it. Supply chain
Levels for Software Artifacts, or SLSA (pronounced “salsa”), is a consortium-curated set of guidance
for organizations to protect against supply chain attacks, evolved from internal guidance Google has
been using for years. We appreciate that SLSA doesn’t promise a “silver bullet,” tools-only approach
to securing the supply chain but instead provides a checklist of concrete threats and practices along
a maturity model. The threat model is easy to follow with real-world examples of attacks, and the
requirements provide guidance to help organizations prioritize actions based on levels of increasing
robustness to improve their supply chain security posture. We think SLSA provides applicable advice
and look forward to more organizations learning from it.

Techniques

16

https://thoughtworks.com/radar/tools/kubernetes-operators
https://thoughtworks.com/radar/techniques/kube-managed-cloud-services
https://thoughtworks.com/radar/tools/crossplane
https://fluxcd.io/
https://thoughtworks.com/radar/platforms/argo-cd
https://thoughtworks.com/radar/techniques/service-mesh
https://thoughtworks.com/radar/platforms/ebpf
https://isovalent.com/blog/post/2021-12-08-ebpf-servicemesh
https://isovalent.com/blog/post/2021-12-08-ebpf-servicemesh
https://github.com/cilium/cilium-service-mesh-beta
https://slsa.dev/
https://slsa.dev/spec/v0.1/threats
https://slsa.dev/spec/v0.1/requirements

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

17. The streaming data warehouse
Assess
The need to respond quickly to customer insights has driven increasing adoption of event-driven
architectures and stream processing. Frameworks such as Spark, Flink or Kafka Streams offer a
paradigm where simple event consumers and producers can cooperate in complex networks to
deliver real-time insights. But this programming style takes time and effort to master and when
implemented as single-point applications, it lacks interoperability. Making stream processing work
universally on a large scale can require a significant engineering investment. Now, a new crop of
tools is emerging that offers the benefits of stream processing to a wider, established group of
developers who are comfortable using SQL to implement analytics. Standardizing on SQL as the
universal streaming language lowers the barrier for implementing streaming data applications. Tools
like ksqlDB and Materialize help transform these separate applications into unified platforms. Taken
together, a collection of SQL-based streaming applications across an enterprise might constitute a
streaming data warehouse.

18. TinyML
Assess
Until recently, executing a machine-learning (ML) model was seen as computationally expensive
and in some cases required special-purpose hardware. While creating the models still broadly sits
within this classification, they can be created in a way that allows them to be run on small, low-cost
and low-power consumption devices. This technique, called TinyML, has opened up the possibility
of running ML models in situations many might assume infeasible. For example, on battery-powered
devices, or in disconnected environments with limited or patchy connectivity, the model can be
run locally without prohibitive cost. If you’ve been considering using ML but thought it unrealistic
because of compute or network constraints, then this technique is worth assessing.

19. Azure Data Factory for orchestration
Hold
For organizations using Azure as their primary cloud provider, Azure Data Factory is currently the
default for orchestrating data-processing pipelines. It supports data ingestion, copying data from
and to different storage types on prem or on Azure and executing transformation logic. Although
we’ve had adequate experience with Azure Data Factory for simple migrations of data stores from
on prem to the cloud, we discourage the use of Azure Data Factory for orchestration of complex
data-processing pipelines and workflows. We’ve had some success with Azure Data Factory when
it’s used primarily to move data between systems. For more complex data pipelines, it still has its
challenges, including poor debuggability and error reporting; limited observability as Azure Data
Factory logging capabilities don’t integrate with other products such as Azure Data Lake Storage
or Databricks, making it difficult to get an end-to-end observability in place; and availability of data
source-triggering mechanisms only to certain regions. At this time, we encourage using other open-
source orchestration tools (e.g., Airflow) for complex data pipelines and limiting Azure Data Factory
for data copying or snapshotting. Our teams continue to use Data Factory to move and extract data,
but for larger operations we recommend other, more well-rounded workflow tools.

Techniques

17

https://thoughtworks.com/radar/platforms/apache-spark
https://thoughtworks.com/radar/platforms/apache-flink
https://thoughtworks.com/radar/platforms/kafka-streams
https://thoughtworks.com/radar/languages-and-frameworks/ksqldb
https://thoughtworks.com/radar/platforms/materialize
https://towardsdatascience.com/an-introduction-to-tinyml-4617f314aa79
https://azure.microsoft.com/en-us/services/data-factory/
https://thoughtworks.com/radar/tools/airflow

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

20. Miscellaneous platform teams
Hold
We previously featured platform engineering product teams in Adopt as a good way for internal
platform teams to operate, thus enabling delivery teams to self-service deploy and operate
systems with reduced lead time and stack complexity. Unfortunately we’re seeing the “platform
team” label applied to teams dedicated to projects that don’t have clear outcomes or a well-defined
set of customers. As a result, these miscellaneous platform teams, as we call them, struggle to
deliver due to high cognitive loads and a lack of clearly aligned priorities as they’re dealing with
a miscellaneous collection of unrelated systems. They effectively become just another general
support team for things that don’t fit or that are unwanted elsewhere. We continue to believe
platform engineering product teams focused around a clear and well-defined (internal) product
offer a better set of outcomes.

21. Production data in test environments
Hold
We continue to perceive production data in test environments as an area for concern. Firstly, many
examples of this have resulted in reputational damage, for example, where an incorrect alert
has been sent from a test system to an entire client population. Secondly, the level of security,
specifically around protection of private data, tends to be less for test systems. There is little
point in having elaborate controls around access to production data if that data is copied to a test
database that can be accessed by every developer and QA. Although you can obfuscate the data,
this tends to be applied only to specific fields, for example, credit card numbers. Finally, copying
production data to test systems can break privacy laws, for example, where test systems are
hosted or accessed from a different country or region. This last scenario is especially problematic
with complex cloud deployments. Fake data is a safer approach, and tools exist to help in its
creation. We do recognize there are reasons for specific elements of production data to be copied,
for example, in the reproduction of bugs or for training of specific ML models. Here our advice is to
proceed with caution.

22. SPA by default
Hold
We generally avoid putting blips in Hold when we consider that advice too obvious, including
blindly following an architectural style without paying attention to trade-offs. However, the sheer
prevalence of teams choosing a single-page application (SPA) by default when they need a website
has us concerned that people aren’t even recognizing SPAs as an architectural style to begin
with, instead immediately jumping into framework selection. SPAs incur complexity that simply
doesn’t exist with traditional server-based websites: search engine optimization, browser history
management, web analytics, first page load time, etc. That complexity is often warranted for user
experience reasons, and tooling continues to evolve to make those concerns easier to address
(although the churn in the React community around state management hints at how hard it can be
to get a generally applicable solution). Too often, though, we don’t see teams making that trade-
off analysis, blindly accepting the complexity of SPAs by default even when the business needs
don’t justify it. Indeed, we’ve started to notice that many newer developers aren’t even aware of
an alternative approach, as they’ve spent their entire career in a framework like React. We believe
that many websites will benefit from the simplicity of server-side logic, and we’re encouraged by
techniques like Hotwire that help close the gap on user experience.

Techniques

18

https://thoughtworks.com/radar/techniques/platform-engineering-product-teams
https://thoughtworks.com/radar/techniques/hotwire

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Platforms

Hold HoldAssess AssessTrial TrialAdopt Adopt

3 1

2435

36

37

38

39

40

41
42

43

29

34

32

412

13

14

19

21

1520

16

17

22

18

5

6

7

9 11

45 49

60

61 62
63

64 65

66
67

68

69

70

71

51 53

57
58

59

52

74

79
80

81

82 83
84

85

86 87

88

89
90

91

93

92

75

77

78

30

31

72

73

76

2

8 10

23

25

26

27
28

33

44

46

47

50

54
55

56

48

Adopt
—

Trial
23. Azure DevOps
24. Azure Pipeline templates
25. CircleCI
26. Couchbase
27. eBPF
28. GitHub Actions
29. GitLab CI/CD
30. Google BigQuery ML
31. Google Cloud Dataflow
32. Reusable workflows in Github Actions
33. Sealed Secrets
34. VerneMQ

Assess
35. actions-runner-controller
36. Apache Iceberg
37. Blueboat
38. Cloudflare Pages
39. Colima
40. Collibra
41. CycloneDX
42. Embeddinghub
43. Temporal

Hold
—

New Moved in/out No change

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

23. Azure DevOps
Trial

As the Azure DevOps ecosystem keeps growing, our teams are using it more with success. These
services contain a set of managed services, including hosted Git repos, build and deployment
pipelines, automated testing tooling, backlog management tooling and artifact repository. We’ve
seen our teams gaining experience in using this platform with good results, which means Azure
DevOps is maturing. We particularly like its flexibility; it allows you to use the services you want even
if they’re from different providers. For instance, you could use an external Git repository while still
using the Azure DevOps pipeline services. Our teams are especially excited about Azure DevOps
Pipelines. As the ecosystem matures, we’re seeing an uptick in onboarding teams that are already
on the Azure stack as it easily integrates with the rest of the Microsoft world.

24. Azure Pipeline templates
Trial
Azure Pipeline templates allow you to remove duplication in your Azure Pipeline definition through
two mechanisms. With “includes” templates, you can reference a template such that it will expand
inline like a parameterized C++ macro, allowing a simple way of factoring out common configuration
across stages, jobs and steps. With “extends” templates, you can define an outer shell with common
pipeline configuration, and with the required template approval, you can fail the build if the pipeline
doesn’t extend certain templates, preventing malicious attacks against the pipeline configuration
itself. Along with CircleCI Orbs and the newer GitHub Actions Reusable Workflows, Azure Pipeline
templates are part of the trend of creating modularity in pipeline design across multiple platforms,
and several of our teams have been happy using them.

25. CircleCI
Trial
Many of our teams choose CircleCI for their continuous integration needs, and they appreciate its
ability to run complex pipelines efficiently. The CircleCI developers continue to add new features
with CircleCI, now in version 3.0. Orbs and executors were called out by our teams as being
particularly useful. Orbs are reusable snippets of code that automate repeated processes, speed up
project setup and make it easy to integrate with third-party tools. The wide variety of executor types
provides flexibility to set up jobs in Docker, Linux, macOS or Windows VMs.

26. Couchbase
Trial
When we originally blipped Couchbase in 2013, it was seen primarily as a persistent cache that
evolved from a merger of Membase and CouchDB. Since then, it has undergone steady improvement
and an ecosystem of related tools and commercial offerings has grown up around it. Among the
additions to the product suite are Couchbase Mobile and the Couchbase Sync Gateway. These
features work together to keep persistent data on edge devices up-to-date even when the device
is offline for periods of time due to intermittent connectivity. As these devices proliferate, we see
increasing need for embedded persistence that continues to work whether or not the device happens
to be connected. Recently, one of our teams evaluated Couchbase for its offline sync capability and
found that this off-the-shelf capability saved them considerable effort that they otherwise would
have had to invest themselves.

Platforms

20

https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/pipelines/
https://azure.microsoft.com/en-us/services/devops/pipelines/
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/templates?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/approvals?view=azure-devops&tabs=check-pass#required-template
https://thoughtworks.com/radar/platforms/circleci
https://thoughtworks.com/radar/platforms/reusable-workflows-in-github-actions
http://circleci.com/
https://circleci.com/docs/2.0/concepts/#orbs
https://circleci.com/docs/2.0/executor-types/
https://www.couchbase.com/
https://github.com/membase
https://couchdb.apache.org/

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

27. eBPF
Trial
For several years now, the Linux kernel has included the extended Berkeley Packet Filter (eBPF), a
virtual machine that provides the ability to attach filters to particular sockets. But eBPF goes far
beyond packet filtering and allows custom scripts to be triggered at various points within the kernel
with very little overhead. Although this technology isn’t new, it’s now coming into its own with the
increasing use of microservices deployed as orchestrated containers. Kubernetes and service
mesh technology such as Istio are commonly used, and they employ sidecars to implement control
functionality. With new tools — Bumblebee in particular makes building, running and distributing
eBPF programs much easier — eBPF can be seen as an alternative to the traditional sidecar. A
maintainer of Cilium, a tool in this space, has even proclaimed the demise of the sidecar. An
approach based on eBPF reduces some overhead in performance and operation that comes with
sidecars, but it doesn’t support common features such as SSL termination.

28. GitHub Actions
Trial
GitHub Actions has grown considerably last year. It has proven that it can take on more complex
workflows and call other actions in composite actions among other things. It still has some
shortcomings, though, such as its inability to re-trigger a single job of a workflow. Although the
ecosystem in the GitHub Marketplace has its obvious advantages, giving third-party GitHub Actions
access to your build pipeline risks sharing secrets in insecure ways (we recommend following
GitHub’s advice on security hardening). However, the convenience of creating your build workflow
directly in GitHub next to your source code combined with the ability to run GitHub Actions locally
using open-source tools such as act is a compelling option that has facilitated setup and onboarding
of our teams.

29. GitLab CI/CD
Trial
If you’re using GitLab to manage your software delivery, you should also look at GitLab CI/CD for
your continuous integration and continuous delivery needs. We’ve found it especially useful when
used with on-premise GitLab and self-hosted runners, as this combination gets around authorization
headaches often caused by using a cloud-based solution. Self-hosted runners can be fully
configured for your purposes with the right OS and dependencies installed, and as a result pipelines
can run much faster than using a cloud-provisioned runner that needs to be configured each time.

Apart from the basic build, test and deploy pipeline, GitLab’s product supports Services, Auto
Devops and ChatOps among other advanced features. Services are useful in running Docker
services such as Postgres or Testcontainer linked to a job for integration and end-to-end testing.
Auto Devops creates pipelines with zero configuration which is very useful for teams that are new to
continuous delivery or for organizations with many repositories that would otherwise need to create
many pipelines manually.

30. Google BigQuery ML
Trial
Since we last blipped about Google BigQuery ML, more sophisticated models such as Deep Neural
Networks and AutoML Tables have been added by connecting BigQuery ML with TensorFlow and
Vertex AI as its backend. BigQuery has also introduced support for time series forecasting. One

Platforms

21

https://ebpf.io/
https://thoughtworks.com/radar/platforms/istio
https://github.com/solo-io/bumblebee
https://thoughtworks.com/radar/tools/cilium
https://isovalent.com/blog/post/2021-12-08-ebpf-servicemesh
https://docs.github.com/en/actions
https://github.com/marketplace?type=actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions
https://github.com/nektos/act
https://gitlab.com/
https://docs.gitlab.com/ee/ci/
https://thoughtworks.com/radar/languages-and-frameworks/testcontainers
https://cloud.google.com/bigquery-ml/docs

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

of our concerns previously was explainability. Earlier this year, BigQuery Explainable AI was
announced for general availability, taking a step in addressing this. We can also export BigQuery ML
models to Cloud Storage as a Tensorflow SavedModel and use them for online prediction. There
remain trade-offs like ease of “continuous delivery for machine learning” but with its low barrier
to entry, BigQuery ML remains an attractive option, particularly when the data already resides in
BigQuery.

31. Google Cloud Dataflow
Trial
Google Cloud Dataflow is a cloud-based data-processing service for both batch and real-time data-
streaming applications. Our teams are using Dataflow to create processing pipelines for integrating,
preparing and analyzing large data sets, with Apache Beam’s unified programming model on top
to ease manageability. We first featured Dataflow in 2018, and its stability, performance and rich
feature set make us confident to move it to Trial in this edition of the Radar.

32. Reusable workflows in Github Actions
Trial
We’ve seen increased interest in GitHub Actions since we first blipped it two Radars ago. With the
release of reusable workflows, GitHub continues to evolve the product in a way that addresses
some of its early shortcomings. Reusable workflows in Github Actions bring modularity to pipeline
design, allowing parameterized reuse even across repositories (as long as the workflow repository
is public). They support explicit passing of confidential values as secrets and can pass outputs to
the calling job. With a few lines of YAML, GitHub Actions now gives you the type of flexibility you see
with CircleCI Orbs or Azure Pipeline Templates, but without having to leave GitHub as a platform.

33. Sealed Secrets
Trial
Kubernetes natively supports a key-value object known as a secret. However, by default,
Kubernetes secrets aren’t really secret. They’re handled separately from other key-value data
so that precautions or access control can be applied separately. There is support for encrypting
secrets before they are stored in etcd, but the secrets start out as plain text fields in configuration
files. Sealed Secrets is a combination operator and command-line utility that uses asymmetric
keys to encrypt secrets so that they can only be decrypted by the controller in the cluster. This
process ensures that the secrets won’t be compromised while they sit in the configuration files
that define a Kubernetes deployment. Once encrypted, these files can be safely shared or stored
alongside other deployment artifacts.

34. VerneMQ
Trial
VerneMQ is an open-source, high-performance, distributed MQTT broker. We’ve blipped other
MQTT brokers in the past like Mosquitto and EMQ. Like EMQ and RabbitMQ, VerneMQ is also based
on Erlang/OTP which makes it highly scalable. It scales horizontally and vertically on commodity
hardware to support a high number of concurrent publishers and consumers while maintaining low
latency and fault tolerance. In our internal benchmarks, we’ve been able to achieve a few million
concurrent connections in a single cluster. While it’s not new, we’ve used it in production for some
time now, and it has worked well for us.

Platforms

22

https://thoughtworks.com/radar/techniques/explainability-as-a-first-class-model-selection-criterion
https://cloud.google.com/bigquery-ml/docs/reference/standard-sql/bigqueryml-syntax-xai-overview
https://cloud.google.com/dataflow/
https://beam.apache.org/
https://thoughtworks.com/radar/platforms/github-actions
https://docs.github.com/en/actions/using-workflows/reusing-workflows
https://thoughtworks.com/radar/platforms/circleci
https://thoughtworks.com/radar/platforms/azure-pipeline-templates
https://thoughtworks.com/radar/platforms/kubernetes
https://etcd.io/
https://github.com/bitnami-labs/sealed-secrets
https://github.com/vernemq/vernemq
https://thoughtworks.com/radar/platforms/mosquitto
https://www.thoughtworks.com/radar/platforms/emq

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

35. actions-runner-controller
Assess
actions-runner-controller is a Kubernetes controller that operates self-hosted runners for GitHub
Actions on your Kubernetes cluster. With this tool you create a runner resource on Kubernetes, and
it will run and operate the self-hosted runner. Self-hosted runners are helpful in scenarios where the
job that your GitHub Actions runs needs to access resources that are either not accessible to GitHub
cloud runners or have specific operating system and environmental requirements that are different
from what GitHub provides. In those cases where you have a Kubernetes cluster, you can run your
self-hosted runners as a Kubernetes pod, with the ability to scale up or down hooking into GitHub
webhook events. actions-controller-runner is lightweight and scalable.

36. Apache Iceberg
Assess
Apache Iceberg is an open table format for very large analytic data sets. Iceberg supports modern
analytical data operations such as record-level insert, update, delete, time-travel queries, ACID
transactions, hidden partitioning and full schema evolution. It supports multiple underlying file
storage formats such as Apache Parquet, Apache ORC and Apache Avro. Many data-processing
engines support Apache Iceberg, including SQL engines such as Dremio and Trino as well as
(structured) streaming engines such as Apache Spark and Apache Flink.

Apache Iceberg falls in the same category as Delta Lake and Apache Hudi. They all more or less
support similar features, but each differs in the underlying implementations and detailed feature
lists. Iceberg is an independent format and is not native to any specific processing engine, hence
it’s supported by an increasing number of platforms, including AWS Athena and Snowflake. For
the same reason, Apache Iceberg, unlike native formats such as Delta Lake, may not benefit from
optimizations when used with Spark.

37. Blueboat
Assess
Blueboat is a multitenant platform for serverless web applications. It leverages the popular V8
JavaScript engine and implements commonly used web application libraries natively in Rust for
security and performance. You can think of Blueboat as an alternative to CloudFlare Workers or
Deno Deploy but with an important distinction — you have to operate and manage the underlying
infrastructure. That said, we recommend you carefully assess Blueboat for your on-prem
serverless needs.

38. Cloudflare Pages
Assess
When Cloudflare Workers was released, we highlighted it as an early function as a service (FaaS)
for edge computing with an interesting implementation. The release of Cloudflare Pages last April
didn’t feel as noteworthy, because Pages is just one in a class of many Git-backed site-hosting
solutions. It did have continuous previews, a useful feature not found in most alternatives. Now,
though, Cloudflare has more tightly integrated Workers and Pages, creating a fully integrated
Jamstack solution running on the CDN. The inclusion of a key-value store and a strongly consistent
coordination primitive further enhance the attractiveness of the new version of Cloudflare Pages.

Platforms

23

https://github.com/actions-runner-controller/actions-runner-controller
https://kubernetes.io/docs/concepts/architecture/controller/
https://docs.github.com/en/actions/hosting-your-own-runners
https://thoughtworks.com/radar/platforms/github-actions
https://thoughtworks.com/radar/platforms/github-actions
https://iceberg.apache.org/
https://iceberg.apache.org/docs/latest/spark-queries/#time-travel
https://iceberg.apache.org/docs/latest/partitioning/#icebergs-hidden-partitioning
https://iceberg.apache.org/docs/latest/evolution/
https://parquet.apache.org/
https://orc.apache.org/
https://avro.apache.org/docs/1.2.0/
https://www.dremio.com/
https://trino.io/
https://spark.apache.org/
https://flink.apache.org/
https://delta.io/
https://hudi.apache.org/
https://docs.aws.amazon.com/athena/latest/ug/querying-iceberg.html
https://www.snowflake.com/
https://github.com/losfair/blueboat
https://thoughtworks.com/radar/languages-and-frameworks/rust
https://thoughtworks.com/radar/platforms/cloudflare-workers
https://deno.com/deploy
https://thoughtworks.com/radar/platforms/cloudflare-workers
https://pages.cloudflare.com/
https://blog.cloudflare.com/cloudflare-pages-goes-full-stack/
https://thoughtworks.com/radar/techniques/jamstack

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

39. Colima
Assess
Colima is becoming a popular open alternative to Docker for Desktop. It provisions the Docker
container runtime in a Lima VM, configures the Docker CLI on macOS and handles port-forwarding
and volume mounts. Colima uses containerd as runtime, which is also the runtime on most
managed Kubernetes services (thus improved dev-prod parity). With Colima you can easily use
and test the latest features of containerd, such as lazy loading for container images. With its good
performance, we’re watching Colima as a strong potential for the open-source choice alternative
to Docker for Desktop.

40. Collibra
Assess
In the increasingly crowded space that is the enterprise data catalog market, our teams have enjoyed
working with Collibra. They liked the deployment flexibility of either a SaaS or self-hosted instance,
the wide range of functionality included out of the box, including data governance, lineage, quality
and observability. Users also have the option to use a smaller subset of capabilities required by a
more decentralized approach such as a data mesh. The real feather in its cap has been their often
overlooked customer support, which our people have found to be collaborative and supportive. Of
course, there’s a tension between simple data catalogs and more full featured enterprise platforms,
but so far the teams using it are happy with how Collibra has supported their needs.

41. CycloneDX
Assess
CycloneDX is a standard for describing a machine-readable Software Bill of Materials (SBOM).
As software and compute fabrics increase in complexity, software becomes harder to define.
Originating with OWASP, CycloneDX improves on the older SPDX standard with a broader definition
that extends beyond the local machine dependencies to include runtime service dependencies.
You’ll also find implementations in several languages, an ecosystem of supporting integrations and a
CLI tool that lets you analyze and change SBOMs with appropriate signing and verification.

42. Embeddinghub
Assess
Embeddinghub is a vector database for machine-learning embeddings, and quite similar to
Milvus. However, with out-of-the-box support for approximate nearest neighbor operations,
partitioning, versioning and access control, we recommend you assess Embeddinghub for your
embedding vector use cases.

43. Temporal
Assess
Temporal is a platform for developing long-running workflows, particularly for microservice
architectures. A fork of Uber’s previous OSS Cadence project, it has an event-sourcing model
for long-running workflows so they can survive process/machine crashes. Although we don’t
recommend using distributed transactions in microservice architectures, if you do need to
implement them or long-running Sagas, you may want to look at Temporal.

Platforms

24

https://github.com/abiosoft/colima
https://containerd.io/
https://www.collibra.com/us/en
https://thoughtworks.com/radar/techniques/data-mesh
https://cyclonedx.org/
https://thoughtworks.com/radar/techniques/software-bill-of-materials
https://cyclonedx.org/tool-center/
https://github.com/CycloneDX/cyclonedx-cli
https://github.com/featureform/embeddinghub
https://www.featureform.com/post/the-definitive-guide-to-embeddings
https://thoughtworks.com/radar/platforms/milvus-2-0
https://temporal.io/
https://github.com/uber/cadence
https://microservices.io/patterns/data/saga.html

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Tools

Adopt
44. tfsec

Trial
45. AKHQ
46. cert-manager
47. Cloud Carbon Footprint
48. Conftest
49. kube-score
50. Lighthouse
51. Metaflow
52. Micrometer
53. NUKE
54. Pactflow
55. Podman
56. Sourcegraph
57. Syft
58. Volta
59. Web Test Runner

Assess
60. CDKTF
61. Chrome Recorder panel
62. Excalidraw
63. GitHub Codespaces
64. GoReleaser
65. Grype
66. Infracost
67. jc
68. skopeo
69. SQLFluff
70. Terraform Validator
71. Typesense

Hold
—

Hold HoldAssess AssessTrial TrialAdopt Adopt

3 1

2435

36

37

38

39

40

41
42

43

29

34

32

412

13

14

19

21

1520

16

17

22

18

5

6

7

9 11

45 49

60

61 62
63

64 65

66
67

68

69

70

71

51 53

57
58

59

52

74

79
80

81

82 83
84

85

86 87

88

89
90

91

93

92

75

77

78

30

31

72

73

76

2

8 10

23

25

26

27
28

33

44

46

47

50

54
55

56

48

New Moved in/out No change

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

44. tfsec
Adopt

For our projects using Terraform, tfsec has quickly become a default static analysis tool to detect
potential security risks. It’s easy to integrate into a CI pipeline and has a growing library of checks
against all of the major cloud providers and platforms like Kubernetes. Given its ease of use, we
believe tfsec could be a good addition to any Terraform project.

45. AKHQ
Trial
AKHQ is a GUI for Apache Kafka that lets you manage topics, topics data, consumer groups and
more. Some of our teams have found AKHQ to be an effective tool to watch the real-time status of a
Kafka cluster. You can, for example, browse the topics on a cluster. For each topic, you can visualize
the name, the number of messages stored, the disk size used, the time of the last record, the
number of partitions, the replication factor with the in-sync quantity and the consumer group. With
options for Avro and Protobuf deserialization, AKHQ can help you understand the flow of data in your
Kafka environment.

46. cert-manager
Trial
cert-manager is a tool to manage your X.509 certificates within your Kubernetes cluster. It
models certificates and issuers as first-class resource types and provides certificates as a service
securely to developers and applications working within the Kubernetes cluster. The obvious choice
when using the Kubernetes default ingress controller, it’s also recommended for others and much
preferred over hand-rolling your own certificate management. Several of our teams have been
using cert-manager extensively, and we’ve also found that its usability has much improved in the
past few months.

47. Cloud Carbon Footprint
Trial
Cloud Carbon Footprint (CCF) is an open-source tool that uses cloud APIs to provide visualizations
of estimated carbon emissions based on usage across AWS, GCP and Azure. The Thoughtworks team
has successfully used the tool with several organizations, including energy technology companies,
retailers, digital service providers and companies that use AI. Cloud platform providers realize that it’s
important to help their customers understand the carbon impact of using their services, so they’ve
begun to build similar functionality themselves. Because CCF is cloud agnostic, it allows users to
view energy usage and carbon emissions for multiple cloud providers in one place, while translating
carbon footprints into real-world impact such as flights or trees planted.

In recent releases, CCF has begun to include Google Cloud and AWS-sourced optimization
recommendations alongside potential energy and CO2 savings, as well as to support more cloud
instance types such as GPU instances. Given the traction the tool has received and the continued
addition of new features, we feel confident moving it to Trial.

Tools

26

https://thoughtworks.com/radar/tools/terraform
https://github.com/liamg/tfsec
https://akhq.io/docs/#installation
https://cert-manager.io/
https://thoughtworks.com/radar/platforms/kubernetes
https://www.cloudcarbonfootprint.org/
https://thoughtworks.com/clients/Bringing-green-cloud-optimization-to-a-green-energy-business

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

48. Conftest
Trial
Conftest is a tool for writing tests against structured configuration data. It relies on the Rego
language from Open Policy Agent to write tests for Kubernetes configurations, Tekton pipeline
definitions or even Terraform plans. We’ve had great experiences with Conftest — and its shallow
learning curve. With fast feedback from tests, our teams iterate quickly and safely on configuration
changes to Kubernetes.

49. kube-score
Trial
kube-score is a tool that does static code analysis of your Kubernetes object definitions. The output
is a list of recommendations for what you can improve to make your application more secure and
resilient. It has a list of predefined checks which includes best practices such as running containers
with non-root privileges and correctly specifying resource limits. It’s been around for some time, and
we’ve used it in a few projects as part of a CD pipeline for Kubernetes manifests. A major drawback of
kube-score is that you can’t add custom policies. We typically supplement it with tools like Conftest
in these cases.

50. Lighthouse
Trial
Lighthouse is a tool written by Google to assess web applications and web pages, collecting
performance metrics and insights on good development practices. We’ve long advocated for
performance testing as a first-class citizen, and the additions to Lighthouse that we mentioned
five years ago certainly helped with that. Our thinking around architectural fitness functions
created strong motivation for tools such as Lighthouse to be run in build pipelines. With the
introduction of Lighthouse CI, it has become easier than ever to include Lighthouse in pipelines
managed by various tools.

51. Metaflow
Trial
Metaflow is a user-friendly Python library and back-end service that helps data scientists and
engineers build and manage production-ready data processing, ML training and inference workflows.
Metaflow provides Python APIs that structure the code as a directed graph of steps. Each step can
be decorated with flexible configurations such as the required compute and storage resources.
Code and data artifacts for each step’s run (aka task) are stored and can be retrieved either for
future runs or the next steps in the flow, enabling you to recover from errors, repeat runs and track
versions of models and their dependencies across multiple runs.

The value proposition of Metaflow is the simplicity of its idiomatic Python library: it fully integrates
with the build and run-time infrastructure to enable running data engineering and science tasks in
local and scaled production environments. At the time of writing, Metaflow is heavily integrated with
AWS services such as S3 for its data store service and step functions for orchestration. Metaflow
supports R in addition to Python. Its core features are open sourced.

If you’re building and deploying your production ML and data-processing pipelines on AWS, Metaflow is
a lightweight full-stack alternative framework to more complex platforms such as MLflow.

Tools

27

https://github.com/open-policy-agent/conftest
https://www.openpolicyagent.org/docs/latest/policy-language/#what-is-rego
https://www.openpolicyagent.org/docs/latest/policy-language/#what-is-rego
https://thoughtworks.com/radar/tools/open-policy-agent-opa
https://thoughtworks.com/radar/platforms/kubernetes
https://thoughtworks.com/radar/platforms/tekton
https://thoughtworks.com/radar/tools/terraform
https://github.com/zegl/kube-score
https://github.com/zegl/kube-score/blob/master/README_CHECKS.md
https://thoughtworks.com/radar/tools/conftest
https://developers.google.com/web/tools/lighthouse/
https://thoughtworks.com/radar/techniques/performance-testing-as-a-first-class-citizen
https://thoughtworks.com/radar/techniques/architectural-fitness-function
https://github.com/GoogleChrome/lighthouse-ci
https://github.com/GoogleChrome/lighthouse-ci/blob/main/docs/getting-started.md#configure-your-ci-provider
https://github.com/Netflix/metaflow
https://www.thoughtworks.com/radar/tools/mlflow

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

52. Micrometer
Trial
Micrometer is a platform-agnostic library for metrics instrumentation on the JVM that supports
Graphite, New Relic, CloudWatch and many other integrations. We’ve found that Micrometer has
benefited both library authors and teams: library authors can include metrics instrumentation code
in their libraries without needing to support each and every metrics system that their users are using;
and teams can support many different metrics on back-end registries which enables organizations
to collect metrics in a consistent way.

53. NUKE
Trial
NUKE is a build system for .NET and an alternative to either the traditional MSBuild or Cake and
Fake which we’ve featured previously in the Radar. NUKE represents build instructions as a C# DSL,
making it easy to learn and with good IDE support. In our experience, NUKE made it really simple
to build automation for .NET projects. We like the accurate static code checks and hints. We also
like that we can use any NuGet package seamlessly and that the automation code can be compiled
to avoid problems at runtime. NUKE isn’t new, but its novel approach — using a C# DSL — and our
positive overall experience prompted us to include it here.

54. Pactflow
Trial
We’ve used Pact for contract testing long enough to see some of the complexity that comes with
scale. Some of our teams have successfully used Pactflow to reduce that friction. Pactflow runs
both as software as a service and as an on-prem deployment with the same features as the SaaS
offering, and it adds improved usability, security and auditing on top of the open-source Pact Broker
offering. We’ve been pleased with our use so far and are happy to see continued effort to remove
some of the overhead of managing contract testing at scale.

55. Podman
Trial
As an alternative to Docker, Podman has been validated by many of our teams. Podman introduces
a daemonless engine for managing and running containers which is an interesting approach in
comparison to what Docker does. Additionally, Podman can be easily run as a normal user without
requiring root privileges, which reduces the attack surface. By using either Open Container
Initiative (OCI) images built by Buildah or Docker images, Podman can be adapted to most container
use cases. Apart from some compatibility issues with macOS, our team has had generally good
experiences with Podman on Linux distributions.

56. Sourcegraph
Trial
In our previous Radar, we featured two tools that search and replace code using an abstract syntax
tree (AST) representation, Comby and Sourcegraph. Although they share some similarities, they
also differ in several ways. Sourcegraph is a commercial tool (with a 10-user free tier). It’s particularly
suited for searching, navigating or cross-referencing in large codebases, with an emphasis on an
interactive developer experience. In contrast, Comby is a lightweight open-source command-line
tool for automating repetitive tasks. Because Sourcegraph is a hosted service, it also has the ability

Tools

28

https://micrometer.io/
https://nuke.build/
https://cakebuild.net/
https://fake.build/
https://github.com/pact-foundation
https://pactflow.io/
https://thoughtworks.com/radar/platforms/docker
https://github.com/containers/podman
https://thoughtworks.com/radar/platforms/rootless-containers
https://thoughtworks.com/radar/platforms/rootless-containers
https://opencontainers.org/
https://opencontainers.org/
https://github.com/containers/buildah
https://thoughtworks.com/radar/tools/comby
https://about.sourcegraph.com/

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Tools

to continuously monitor code bases and send alerts when a match occurs. Now that we’ve gained
more experience with Sourcegraph, we decided to move it into the Trial ring to reflect our positive
experience — which doesn’t mean that Sourcegraph is better than Comby. Each tool focuses on a
different niche.

57. Syft
Trial
One of the key elements of improving “supply chain security” is using a Software Bill of Materials
(SBOM), which is why publishing an SBOM along with the software artifact is increasingly important.
Syft is a CLI tool and Go library for generating an SBOM from container images and file systems. It
can generate the SBOM output in multiple formats, including JSON, CycloneDX and SPDX. The SBOM
output of Syft can be used by Grype for vulnerability scanning. One way to publish the generated
SBOM along with the image is to add it as an attestation using Cosign. This allows consumers of the
image to verify the SBOM and to use it for further analysis.

58. Volta
Trial
When working on multiple JavaScript codebases at the same time, it’s often necessary to use
different versions of Node and other JavaScript tools. On developer machines, these tools are
usually installed in the user account or the machine itself, which means a solution is needed to
switch between multiple installations. For Node itself there’s nvm, but we want to highlight Volta as
an alternative that we’re seeing in use with our teams. Volta has several advantages over using nvm:
it can manage other JavaScript tools such as Yarn; it also has the notion of pinning a version of the
toolchain on a project basis, which means that developers can simply use the tools in a given code
directory without having to worry about manually switching between tool versions — Volta simply
uses shims in the path to select the pinned version. Written in Rust, Volta is fast and ships as a single
binary without dependencies.

59. Web Test Runner
Trial
Web Test Runner is a package within the Modern Web project, which provides several high-quality
tools for modern web development with support for web standards like ES Modules. Web Test
Runner is a test runner for web applications. One of its advantages compared to existing test runners
is that it runs tests in the browser (which could be headless). It supports multiple browser launchers

— including Puppeteer, Playwright, and Selenium — and uses Mocha by default for the test
framework. The tests run pretty fast, and we like that we can open a browser window with devtools
when debugging. Web Test Runner internally uses Web Dev Server which allows us to leverage its
great plugin API for adding customized plugins for our test suite. Modern Web tools look like a very
promising developer toolchain, and we’re already using it in a few projects.

60. CDKTF
Assess
By now many organizations have created sprawling landscapes of services in the cloud. Of course,
this is only possible when using infrastructure as code and mature tooling. We still like Terraform,
not the least because of its rich and growing ecosystem. However, the lack of abstractions in HCL,
Terraform’s default configuration language, effectively creates a glass ceiling. Using Terragrunt

29

https://thoughtworks.com/radar/techniques/software-bill-of-materials
https://thoughtworks.com/radar/techniques/software-bill-of-materials
https://github.com/anchore/syft
https://thoughtworks.com/radar/platforms/cyclonedx
https://thoughtworks.com/radar/tools/grype
https://thoughtworks.com/radar/tools/cosign
https://volta.sh/
https://modern-web.dev/docs/test-runner/overview/
https://modern-web.dev/
https://thoughtworks.com/radar/languages-and-frameworks/puppeteer
https://thoughtworks.com/radar/tools/playwright
https://modern-web.dev/docs/dev-server/overview/
https://thoughtworks.com/radar/techniques/infrastructure-as-code
https://thoughtworks.com/radar/tools/terraform
https://thoughtworks.com/radar/tools/terragrunt

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

pushes that up a bit further, but more and more often our teams find themselves longing for the
abstractions afforded by modern programming languages. Cloud Development Kit for Terraform
(CDKTF), which resulted from a collaboration between AWS’s CDK team and Hashicorp, makes it
possible for teams to use several programming languages, including TypeScript and Java, to define
and provision infrastructure. With this approach it follows the lead of Pulumi while remaining in the
Terraform ecosystem. We’ve had good experiences with CDKTF but have decided to keep it in the
Assess ring until it moves out of beta.

61. Chrome Recorder panel
Assess
Chrome Recorder panel is a preview feature in Google Chrome 97 that allows for simple record and
playback of user journeys. While this definitely isn’t a new idea, the way in which it is integrated into
Chrome allows for quick creation, editing and running of scripts. The panel also integrates nicely with
the performance panel, which makes getting repeated consistent feedback on page performance
easier. While record/playback style testing always needs to be used with care in order to avoid brittle
tests, we think this preview feature is worth assessing, especially if you’re already using the Chrome
Performance panel to measure your pages.

62. Excalidraw
Assess
Excalidraw is a simple but powerful online drawing tool that our teams enjoy using. Sometimes teams
just need a quick picture instead of a formal diagram, for remote teams Excalidraw provides a quick
way to create and share diagrams. Our teams also like the “lo-fi” look of the diagrams it can produce,
which is reminiscent of the whiteboard diagrams they would have produced when co-located. One
caveat: you need to pay attention to the default security — at the time of writing, anyone who has the
link can see the diagram. A paid-for version provides further authentication.

63. GitHub Codespaces
Assess
GitHub Codespaces allows developers to create development environments in the cloud and
access them through an IDE as though the environment were local. GitHub isn’t the first company
to implement this idea; we previously blipped about Gitpod. We like that Codespaces allows
environments to be standardized by using dotfiles configuration, making it quicker to onboard new
team members, and that they offer VMs with up to 32 cores and 64GB memory. These VMs can be
spun up in under ten seconds, potentially offering environments more powerful than a developer
laptop.

64. GoReleaser
Assess
GoReleaser is a tool that automates the process of building and releasing a Go project for different
architectures via multiple repositories and channels, a common need for Go projects targeting
different platforms. You run the tool either from your local machine or via CI, with the tool available
via several CI services thus minimizing set-up and maintenance. GoReleaser takes care of build,
packaging, publishing and announcement of each release and supports different combinations of
package format, package repository and source control. Although it’s been around for a few years,
we’re surprised that more teams are not using it. If you’re regularly releasing a Go codebase, this tool
is worth assessing.

Tools

30

https://www.terraform.io/cdktf
https://www.terraform.io/cdktf
https://thoughtworks.com/radar/platforms/aws-cloud-development-kit
https://www.thoughtworks.com/radar/platforms/pulumi
https://developer.chrome.com/docs/devtools/recorder/
https://excalidraw.com/
https://github.com/features/codespaces
https://thoughtworks.com/radar/techniques/development-environments-in-the-cloud
https://thoughtworks.com/radar/tools/gitpod
https://github.com/goreleaser/goreleaser

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

65. Grype
Assess
Securing the software supply chain has become a commonplace concern among delivery teams,
a concern that is reflected by the growing number of new tools in this space. Grype is a new
lightweight vulnerability scanning tool for Docker and OCI images. It can be installed as a binary, can
scan images before they’re pushed to a registry, and it doesn’t require a Docker daemon to run on
your build agents. Grype comes from the same team that is behind Syft, which generates SBOMs
in various formats from container images. Grype can consume the SBOM output of Syft to scan for
vulnerabilities.

66. Infracost
Assess

One often-cited advantage of moving to the cloud is transparency around infrastructure spend. In
our experience, this is often not the case. Teams don’t always think about the decisions they make
around infrastructure in terms of financial cost which is why we previously blipped about run cost
as architecture fitness function. We’re intrigued by the release of a new tool called Infracost which
aims to make cost trade-offs visible in Terraform pull requests. It’s open-source software and
available for macOS, Linux, Windows and Docker and supports pricing for AWS, GCP and Microsoft
Azure out of the box. It also provides a public API that can be queried for current cost data. Our
teams are excited by its potential, especially when it comes to gaining better cost visibility in the IDE.

67. jc
Assess
In our previous Radar, we placed modern Unix commands in Assess. One of the commands featured
in that collection of tools was jq, effectively a sed for JSON. jc performs a related task: it takes the
output of common Unix commands and parses the output into JSON. The two commands together
provide a bridge between the Unix CLI world and the raft of libraries and tools that operate on JSON.
When writing simple scripts, for example, for software deployment or gathering troubleshooting
information, having the myriad of different Unix command output formats mapped into well-defined
JSON can save a lot of time and effort. As with jq, you need to make sure the command is available.
It can be installed from many of the well-known package repositories.

68. skopeo
Assess
skopeo is a command line utility that performs various operations on container images and image
repositories. It doesn’t require a user to be root to do most of its operations nor does it require a
daemon to be running. It’s a useful part of a CI pipeline; we’ve used it to copy images from one registry
to another as we promote the images. It’s better than doing a pull and a push as we don’t need to store
the images locally. It’s not a new tool, but it’s useful enough and underutilized that we felt it’s worth
calling it out.

Tools

31

https://github.com/anchore/grype
https://thoughtworks.com/radar/tools/syft
https://thoughtworks.com/radar/techniques/software-bill-of-materials
https://thoughtworks.com/radar/techniques/run-cost-as-architecture-fitness-function
https://thoughtworks.com/radar/techniques/run-cost-as-architecture-fitness-function
https://infracost.io/
https://thoughtworks.com/radar/tools/modern-unix-commands
https://kellyjonbrazil.github.io/jc/docs/
https://github.com/containers/skopeo

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

69. SQLFluff
Assess
While linting is an ancient practice in the software world, it’s had slower adoption in the data world.
SQLFluff is a cross-dialect SQL linter written in Python that ships with a simple command line
interface (CLI), making it easy to incorporate into a CI/CD pipeline. If you’re comfortable with the
default conventions, then SQLFluff works without any additional configuration after installing it
and will enforce a strongly opinionated set of formatting standards; setting your own conventions
involves adding a configuration dotfile. The CLI can automatically fix certain classes of violations
that involve formatting concerns like whitespace or uppercasing of keywords. SQLFluff is still new,
but we’re excited to see SQL getting some attention in the linting world.

70. Terraform Validator
Assess
Organizations that have adopted infrastructure as code and self-service infrastructure platforms are
looking for ways to give teams a maximum of autonomy while still enforcing good security practices
and organizational policies. We’ve highlighted tfsec before and are moving it into the Adopt category
in this Radar. For teams working on GCP, Terraform Validator could be an option when creating a
policy library, a set of constraints that are checked against Terraform configurations.

71. Typesense
Assess
Typesense is a fast, typo-tolerant text search engine. For use cases with large volumes of data,
Elasticsearch might still be a good option as it provides a horizontally scalable disk-based search
solution. However, if you’re building a latency-sensitive search application with a search index size
that can fit in memory, Typesense is a powerful alternative and another option to evaluate alongside
tools such as Meilisearch.

Tools

32

https://docs.sqlfluff.com/en/stable/
https://thoughtworks.com/radar/techniques/infrastructure-as-code
https://thoughtworks.com/radar/tools/tfsec
https://github.com/GoogleCloudPlatform/terraform-validator
https://github.com/typesense/typesense
https://thoughtworks.com/radar/platforms/meilisearch

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

Languages and
Frameworks

Adopt
72. SwiftUI
73. Testcontainers

Trial
74. Bob
75. Flutter-Unity widget
76. Kotest
77. Swift Package Manager
78. Vowpal Wabbit

Assess
79. Android Gradle plugin - Kotlin DSL
80. Azure Bicep
81. Capacitor
82. Java 17
83. Jetpack Glance
84. Jetpack Media3
85. MistQL
86. npm workspaces
87. Remix
88. ShedLock
89. SpiceDB
90. sqlc
91. The Composable Architecture
92. WebAssembly
93. Zig

Hold
—

Hold HoldAssess AssessTrial TrialAdopt Adopt

3 1

2435

36

37

38

39

40

41
42

43

29

34

32

412

13

14

19

21

1520

16

17

22

18

5

6

7

9 11

45 49

60

61 62
63

64 65

66
67

68

69

70

71

51 53

57
58

59

52

74

79
80

81

82 83
84

85

86 87

88

89
90

91

93

92

75

77

78

30

31

72

73

76

2

8 10

23

25

26

27
28

33

44

46

47

50

54
55

56

48

New Moved in/out No change

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

72. SwiftUI
Adopt
When Apple introduced SwiftUI a few years ago, it was a big step forward for implementing user
interfaces on all kinds of devices made by Apple. From the beginning, we liked the declarative, code-
centric approach and the reactive programming model provided by Combine. We did notice, though,
that writing a lot of view tests, which you still need with a model—view—viewmodel (MVVM) pattern,
was not really sensible with the XCUITest automation framework provided by Apple. This gap has
been closed by ViewInspector. A final hurdle was the minimum OS version required. At the time of
release, only the very latest versions of iOS and macOS could run applications written with SwiftUI,
but because of Apple’s regular cadence of updates, SwiftUI apps can now run on practically all
versions of macOS and iOS that receive security updates.

73. Testcontainers
Adopt
We’ve had enough experience with Testcontainers that we think it’s a useful default option for
creating a reliable environment for running tests. It’s a library, ported to multiple languages,
that Dockerizes common test dependencies — including various types of databases, queuing
technologies, cloud services and UI testing dependencies like web browsers — with the ability to run
custom Dockerfiles when needed. It works well with test frameworks like JUnit, is flexible enough to
let users manage the container lifecycle and advanced networking and quickly sets up an integrated
test environment. Our teams have consistently found this library of programmable, lightweight and
disposable containers to make functional tests more reliable.

74. Bob
Trial
When building an app with React Native you sometimes find yourself having to create your own
modules. For example, we’ve encountered this need when building a UI component library for
a React Native app. Creating such a module project isn’t straightforward, and our teams report
success using Bob to automate this task. Bob provides a CLI to create the scaffolding for different
targets. The scaffolding is not limited to core functionality but, optionally, can include example code,
linters, build pipeline configuration and other features.

75. Flutter-Unity widget
Trial
Flutter is increasingly popular for building cross-platform mobile apps, and Unity is great for
building AR/VR experiences. A key piece in the puzzle for integrating Unity and Flutter is the
Flutter-Unity widget, which allows embedding Unity apps inside Flutter widgets. One of the key
capabilities the widget offers is bi-directional communication between Flutter and Unity. We’ve
found its performance to be pretty good as well, and we’re looking forward to leveraging Unity in
more Flutter apps.

76. Kotest
Trial
Kotest (previously KotlinTest) is a stand-alone testing tool for the Kotlin ecosystem that is
continuing to gain traction within our teams across various Kotlin implementations — native, JVM
or JavaScript. Key advantages are that it offers a variety of testing styles in order to structure the

Languages and Frameworks

34

https://developer.apple.com/xcode/swiftui/
https://thoughtworks.com/radar/languages-and-frameworks/combine
https://thoughtworks.com/radar/languages-and-frameworks/viewinspector
https://www.testcontainers.org/
https://github.com/testcontainers
https://github.com/callstack/react-native-builder-bob
https://github.com/juicycleff/flutter-unity-view-widget
https://kotest.io/
https://thoughtworks.com/radar/languages-and-frameworks/kotlin

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

test suites and that it comes with a comprehensive set of matchers, which allow for expressive
tests in an elegant internal DSL. In addition to its support for property-based testing — a
technique we’ve highlighted previously in the Radar — our teams like the solid IntelliJ plugin and
the growing community of support.

77. Swift Package Manager
Trial
Some programming languages, especially newer ones, have a package and dependency management
solution built in. When it was introduced in 2014, Swift didn’t come with a package manager, and
so the macOS and iOS developer community simply kept using CocoaPods and Carthage, the
third-party solutions that had been created for Objective-C. A couple of years later Swift Package
Manager (SwiftPM) was started as an official Apple open-source project, and it then took another
few years before Apple added support for it to Xcode. Even at that point, though, many development
teams continued to use CocoaPods and Carthage, mostly because many packages were simply not
available via SwiftPM. Now that most packages can be included via SwiftPM and processes have
been further streamlined for both creators and consumers of packages, our teams are increasingly
relying on SwiftPM.

78. Vowpal Wabbit
Trial
Vowpal Wabbit is a general-purpose machine-learning library. Originally created at Yahoo! Research
over a decade ago, Vowpal Wabbit continues to implement new algorithms in reinforcement learning.
We want to highlight Vowpal Wabbit 9.0, a major release after six years, and encourage you to plan
the migration as it has several usability improvements, new reductions and bug fixes.

79. Android Gradle plugin - Kotlin DSL
Assess
Android Gradle plugin - Kotlin DSL added support for Kotlin Script as an alternative to Groovy
for Gradle build scripts. The goal of replacing Groovy with Kotlin is to provide better support for
refactoring and simpler editing in IDEs as well as ultimately to produce code that is easier to read
and maintain. For teams already using Kotlin it also means working on the build in a familiar language.
We had a team with an at least seven-year-old 450-line build script migrate within a few days. If
you have large or complex gradle build scripts, then it’s worth assessing whether Kotlin Script will
produce better outcomes for your teams.

80. Azure Bicep
Assess
For those who prefer a more natural language than JSON for infrastructure code, Azure Bicep is a
domain-specific language (DSL) that uses a declarative syntax. It supports reusable parameterized
templates for modular resource definitions. A Visual Studio Code extension provides instant type-
safety, intellisense and syntax checking, and the compiler allows bidirectional transpilation to and
from ARM templates. Bicep’s resource-oriented DSL and native integration with the Azure ecosystem
make it a compelling choice for Azure infrastructure development.

81. Capacitor
Assess
We’ve been debating the merits of cross-platform mobile development tools for nearly as long as
we’ve been publishing the Technology Radar. We first noted a new generation of tools in 2011 when

Languages and Frameworks

35

https://thoughtworks.com/radar/techniques/property-based-unit-testing
https://thoughtworks.com/radar/tools/carthage
https://github.com/apple/swift-package-manager
https://github.com/apple/swift-package-manager
https://vowpalwabbit.org/
https://vowpalwabbit.org/blog/vowpalwabbit-9.0.0.html
https://vowpalwabbit.org/docs/vowpal_wabbit/python/latest/reference/python_8110_900_migration_guide.html
https://developer.android.com/studio/build/migrate-to-kts
https://docs.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview?tabs=bicep
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-bicep

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

blipping about cross-mobile platforms. Although we were skeptical of them at first, these tools have
been perfected and widely adopted over the years. And nobody can debate the enduring popularity
and usefulness of React Native. Capacitor is the latest generation of a line of tools starting with
PhoneGap, then renamed to Apache Cordova. Capacitor is a complete rewrite from Ionic that
embraces the progressive web app style for stand-alone applications. So far, our developers like
that they can address web, iOS and Android applications with a single code base and that they can
manage the native platforms separately with access to the native APIs when necessary. Capacitor
offers an alternative to React Native, which has many years of cross-platform experience behind it.

82. Java 17
Assess
We don’t routinely feature new versions of languages, but we wanted to highlight the new long-
term support (LTS) version of Java, version 17. While there are promising new features, such as
the preview of pattern matching, it’s the switch to the new LTS process that should interest many
organizations. We recommend organizations assess new releases of Java as and when they become
available, making sure they adopt new features and versions as appropriate. Surprisingly many
organizations do not routinely adopt newer versions of languages even though regular updates help
keep things small and manageable. Hopefully the new LTS process, alongside organizations moving
to regular updates, will help avoid the “too expensive to update” trap that ends with production
software running on an end-of-life version of Java.

83. Jetpack Glance
Assess
Android 12 brought significant changes to app widgets that have improved the user and developer
experience. For writing regular Android apps, we’ve expressed our preference for Jetpack Compose
as a modern way of building native user interfaces. Now, with Jetpack Glance, which is built on
top of the Compose runtime, developers can use similar declarative Kotlin APIs for writing widgets.
Recently, Glance has been extended to support Tiles for Wear OS.

84. Jetpack Media3
Assess
Android today has several media APIs: Jetpack Media, also known as MediaCompat, Jetpack Media2
and ExoPlayer. Unfortunately, these libraries were developed independently, with different goals but
overlapping functionality. Android developers not only had to choose which library to use, they also
had to contend with writing adaptors or other connecting code when features from multiple APIs
were needed. Jetpack Media3 is an effort, currently in early access, to create a new API that takes
common areas of functionality from the existing APIs — including UI, playback and media session
handling — combining them into a merged and refined API. The player interface from ExoPlayer has
also been updated, enhanced and streamlined to act as the common player interface for Media3.

85. MistQL
Assess
MistQL is a small domain-specific language for performing computations on JSON-like structures.
Originally built for handcrafted feature extraction of machine-learning models on the frontend,
MistQL currently supports a JavaScript implementation for browsers and a Python implementation
for server-side use cases. We quite like its clean composable functional syntax, and we encourage
you to assess it based on your needs.

Languages and Frameworks

36

https://thoughtworks.com/radar/tools/cross-mobile-platforms
https://thoughtworks.com/radar/languages-and-frameworks/react-native
https://capacitorjs.com/
https://thoughtworks.com/radar/platforms/phonegap-apache-cordova
https://thoughtworks.com/radar/techniques/progressive-web-applications
https://openjdk.java.net/jeps/406
https://thoughtworks.com/radar/languages-and-frameworks/jetpack-compose
https://developer.android.com/jetpack/androidx/releases/glance
https://android-developers.googleblog.com/2022/01/announcing-glance-tiles-for-wear-os.html
https://developer.android.com/jetpack/androidx/releases/media3
https://github.com/evinism/mistql

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

86. npm workspaces
Assess
While many tools support multipackage development in the node.js world, npm 7 adds direct support
with the addition of npm workspaces. Managing related packages together facilitates development,
allowing you, for example, to store multiple related libraries in a single repo. With npm workspaces,
once you add a configuration in a top-level package.json file to refer to one or more nested package.
json files, commands like npm install work across multiple packages, symlinking the dependent
source packages into the root node_modules directory. Other npm commands are also now
workspace aware, allowing you, for example, to execute npm run and npm test commands across
multiple packages with a single command. Having that flexibility out of the box decreases the need
for some teams to reach for another package manager.

87. Remix
Assess
We witnessed the migration from server-side rendering website to single-page application in the
browser, now the pendulum of web development seems to swing back to the middle. Remix is one
such example. It’s a full-stack JavaScript framework. It provides fast page loads by leveraging
distributed systems and native browsers instead of clumsy static builds. It has made some
optimizations on nested routing and page loading, which makes page rendering seem especially
fast. Many people will compare Remix with Next.js, which is similarly positioned. We’re glad to see
such frameworks cleverly combining the browser run time with the server run time to provide a
better user experience.

88. ShedLock
Assess
Executing a scheduled task once and only once in a cluster of distributed processors is a relatively
common requirement. For example, the situation might arise when ingesting a batch of data, sending
a notification or performing some regular cleanup activity. But this is a notoriously difficult problem.
How does a group of processes cooperate reliably over laggy and less reliable networks? Some kind
of locking mechanism is required to coordinate actions across the cluster. Fortunately, a variety of
distributed stores can implement a lock. Systems like ZooKeeper and Consul as well as databases
such as DynamoDB or Couchbase have the necessary underlying mechanisms to manage consensus
across the cluster. ShedLock is a small library for taking advantage of these providers in your own
Java code, if you’re looking to implement your own scheduled tasks. It provides an API for acquiring
and releasing locks as well as connectors to a wide variety of lock providers. If you’re writing your
own distributed tasks but don’t want to take on the complexity of an entire orchestration platform like
Kubernetes, ShedLock is worth a look.

89. SpiceDB
Assess
SpiceDB is a database system, inspired by Google’s Zanzibar, for managing application permissions.
With SpiceDB, you create a schema to model the permissions requirements and use the client
library to apply the schema to one of the supported databases, insert data and query to efficiently
answer questions like “Does this user have access to this resource?” or even the inverse “What are
all the resources this user has access to?” We usually advocate separating the authorization policies
from code, but SpiceDB takes it a step further by separating data from the policy and storing it as
a graph to efficiently answer authorization queries. Because of this separation, you have to ensure

Languages and Frameworks

37

https://docs.npmjs.com/cli/v8/using-npm/workspaces
https://remix.run/
https://thoughtworks.com/radar/languages-and-frameworks/next-js
https://zookeeper.apache.org/
https://thoughtworks.com/radar/tools/consul
https://thoughtworks.com/radar/platforms/couchbase
https://github.com/lukas-krecan/ShedLock
https://thoughtworks.com/radar/platforms/kubernetes
https://github.com/authzed/spicedb
https://research.google/pubs/pub48190
https://docs.authzed.com/reference/api#client-libraries
https://docs.authzed.com/reference/api#client-libraries
https://docs.authzed.com/spicedb/selecting-a-datastore

Thoughtworks Technology Radar

© Thoughtworks, Inc. All Rights Reserved.

that the changes in your application’s primary data store are reflected in SpiceDB. Among other
Zanzibar-inspired implementations, we find SpiceDB to be an interesting framework to assess for your
authorization needs.

90. sqlc
Assess
sqlc is a compiler that generates type-safe idiomatic Go code from SQL. Unlike other approaches
based on object-relational mapping (ORM), you continue to write plain SQL for your needs. Once
invoked, sqlc checks the correctness of the SQL and generates performant Go code, which can be
directly called from the rest of the application. With stable support for both PostgreSQL and MySQL,
sqlc is worth a look, and we encourage you to assess it.

91. The Composable Architecture
Assess
Developing apps for iOS has become more streamlined over time, and SwiftUI moving into Adopt
is a sign of that. Going beyond the general nature of SwiftUI and other common frameworks,
The Composable Architecture (TCA) is both a library and an architectural style for building
apps. It was designed over the course of a series of videos, and the authors state that they had
composition, testing and ergonomics in mind, building on a foundation of ideas from The Elm
Architecture and Redux. As expected, the narrow scope and opinionatedness is both a strength
and a weakness of TCA. We feel that teams who don’t have a lot of expertise in writing iOS apps,
which are often teams who may be looking after multiple related codebases with different tech
stacks, stand to benefit the most from using an opinionated framework like TCA, and we like the
opinions expressed in TCA.

92. WebAssembly
Assess
WebAssembly (WASM) is the W3C standard that provides capabilities of executing code in the
browser. Supported by all major browsers and backward compatible, it’s a binary compilation format
designed to run in the browser at near native speeds. It opens up the range of languages you can
use to write front-end functionality, with early focus on C, C++ and Rust, and it’s also an LLVM
compilation target. When run in the sandbox, it can interact with JavaScript and shares the same
permissions and security model. Portability and security are key capabilities that will enable most
platforms, including mobile and IoT.

93. Zig
Assess
Zig is a new language that shares many attributes with C but with stronger typing, easier memory
allocation, support for namespacing and a host of other features. Its syntax, however, is reminiscent
of JavaScript rather than C, which some may hold against it. Zig’s aim is to provide a very simple
language with straightforward compilation that minimizes side-effects and delivers predictable,
easy-to-trace execution. Zig also provides simplified access to LLVM’s cross-compilation capability.
Some of our developers have found this feature so viable, they’re using Zig as a cross-compiler even
though they aren’t writing Zig code. Zig is a novel language and worth looking into for applications
where C is being considered or already in use as well as for low-level systems applications that
require explicit memory manipulation.

Languages and Frameworks

38

https://github.com/kyleconroy/sqlc
https://www.thoughtworks.com/radar/languages-and-frameworks/swiftui
https://github.com/pointfreeco/swift-composable-architecture#the-composable-architecture
http://webassembly.org/
https://llvm.org/
https://llvm.org/
https://ziglang.org/
https://llvm.org/

Want to stay up to date with all
Radar-related news and insights?
Follow us on your favorite social channel
or become a subscriber.

Thoughtworks is a global technology
consultancy that integrates strategy, design
and engineering to drive digital innovation.
We are 10,000+ people strong across 49 offices
in 17 countries. Over the last 25+ years, we’ve
delivered extraordinary impact together with our
clients by helping them solve complex business
problems with technology as the differentiator.

Subscribe now

https://thght.works/36d4xLh
https://thght.works/TWFB
https://thght.works/TWIN
https://thght.works/TWLI
https://thght.works/TWTW
https://thght.works/3ML1lat

	About the Radar
	Radar at a glance
	Contributors
	Themes
	The Radar
	Techniques
	Platforms
	Tools
	Languages and Frameworks

